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Abstract

This paper shows that regime shifts in Full-Information Rational Expectations (FIRE)

models generate predictable regime-dependent forecast errors in macro aggregates. Hence,

forecast error predictability alone is neither sufficient to reject FIRE nor informative about

alternative expectations theories. We instead propose a regime-robust test of FIRE and ap-

ply it to a medium-scale New Keynesian model with monetary policy regime shifts that is

estimated on US data. While the test fails to decisively reject FIRE, the model conditional on

macro data implies expectations that are generally different from observed survey forecasts,

thus providing a new empirical motivation for alternative expectations theories.
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1 Introduction

Much of modern macroeconomic research operates under the assumption that agents perfectly

know the current state of the economy and form expectations rationally based on a “model-

consistent” calculation of the equilibrium. One of the hallmarks of this full-information rational

expectations (FIRE) hypothesis is that forecast errors are unpredictable. Yet, a growing body of

research based on survey expectations data shows that ex-post forecast errors are often predictable

in systematic and quantitatively important ways. This has been taken as evidence against FIRE

and has sparked a burgeoning literature introducing information frictions, departures from rational

expectations, or combinations thereof to explain observed forecast error patterns.1

In this paper, we study the predictability of ex-post forecast errors in FIRE models in the

presence of regime shifts in either model parameters or stochastic processes. Such regime shifts,

due, for example, to changes in the economic environment or the stance of fiscal and monetary

policy, are well-documented and the focus of a large literature.2

The main result of our investigation is that regime shifts in FIRE models lead to predictable

regime-dependent forecast errors. Intuitively, regime shifts introduce uncertainty about the future

probability distribution of variables. Agents incorporate this uncertainty by forming expectations

as a weighted average of regime-conditional forecasts. Forecast errors, measured ex-post after a

particular regime has realized, are therefore systematically related to information available at the

time of forecast.

The result has two important implications. First, in the presence of regime shifts, predictability

of forecast errors is not a sufficient condition to reject FIRE. Specifically, a researcher estimat-

ing reduced-form regressions of ex-post forecast errors on current information may find significant

non-zero coefficients even if the data have been generated under FIRE. The sign of the estimated

coefficient depends on the sample sequence of realized regimes relative to agents’ expectations.

Hence, regime shifts produce waves of over- and under-reaction of expectations to current infor-

mation across rolling window regressions as the sample sequence of regime realizations changes.

1See Coibion and Gorodnichenko (2015), Angeletos, Huo, and Sastry (2020), Bordalo et al. (2020), Kohlhas
and Walther (2021), and Farmer, Nakamura, and Steinsson (2023), among many others. Also see Coibion, Gorod-
nichenko, and Kamdar (2018) for a summary of the literature.

2Prominent examples include Clarida, Gali, and Gertler (2000), Leeper and Zha (2003), Stock and Watson
(2002), Cogley and Sargent (2004), Lubik and Schorfheide (2004), Boivin and Giannoni (2006), Sims and Zha
(2006), and Bianchi (2013). Also see Hamilton (2016) for a survey and references therein.

1



Forecast error predictability vanishes only as the sample grows large and the distribution of regime

realizations converges to its population counterpart (and thus agents’ expectations). In the limit,

unpredictability of forecast errors therefore remains a hallmark of FIRE even in the presence of

regime shifts. But regime shifts may be too infrequent for this convergence to occur in available

samples of macroeconomic forecasting data.

Second, in the presence of regime shifts, forecast error regressions on their own are not informa-

tive about alternative theories of expectations formation. This is because ex-post forecast errors

by forward-looking agents – whether fully informed rational or not – are a complicated function

of the sample sequence of regime realization that is generally unobserved by the researcher. In

addition, with the exception of stylized examples, the variables used as predictors in forecast error

regressions do not span the information set of forecasters. Hence, the regressions are generally sub-

ject to omitted variable bias. We view this second implication as perhaps most important, since

the literature has used estimates from forecast error regressions to argue in favor of or against

specific forms of information frictions or departures from rationality.

These results should be taken as neither an endorsement of FIRE nor a rejection of alternative

theories of expectations formation. Indeed, there is much empirical evidence that even sophisti-

cated market participants are subject to imperfect information and make decisions that are hard

to square with the assumption of rational expectations.3 Instead, the question is whether FIRE

constitutes an appropriate metaphor for average expectations and macroeconomic dynamics, or

whether alternative theories of expectations formation provide a better fit with the data. This is

important because such alternative theories can lead to policy prescriptions that differ substan-

tially from those under FIRE.4 Our results imply that to answer this question, researchers should

assess FIRE against alternative expectations processes as part of fully specified structural models

that incorporate plausible regime shifts. To that end, we propose a simulation-based test, which

computes the probability that the forecast error predictability estimated in the data was generated

from a given model. We then apply the test to a medium-scale New Keynesian model with regime

shifts in monetary policy.

The rest of the paper proceeds as follows. Section 2 sets the stage by reviewing the existing

3See Tversky and Kahneman (1973), Kahneman and Tversky (1973), De Bondt and Thaler (1985), De Bondt
and Thaler (1989), Adam (2007), and Malmendier and Nagel (2016), among many others. Furthermore, there is
pervasive heterogeneity in the level and accuracy of forecasts across economic agents, directly contradicting the
FIRE hypothesis. See Carroll (2003); Coibion, Gorodnichenko, and Kamdar (2018); Broer et al. (2021); and Weber
et al. (2022) for examples.

4See for example Ball, Mankiw, and Reis (2005) and Paciello and Wiederholt (2014).
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empirical evidence on the predictability of forecast errors with data for US inflation and output

growth from the Survey of Professional Forecasters (SPF). We then document that this data

features waves of over- and under-reaction of forecasts to current information over rolling sample

windows.

Motivated by these findings, in Section 3 we illustrate the implications of regime shifts for

forecast error predictability in a univariate FIRE model whose coefficients switch according to a

Markov process. Agents have perfect information about the current state of the economy, including

the realized regime, and form rational expectations about the future based on full knowledge of the

environment. The simplicity of the model admits a closed-form solution of ex-post forecast errors

as a function of the current state, with the sign of this relationship depending on the future regime

realization. We then derive the expected forecast error regression coefficient and show that the

sign and magnitude of the estimates depend on the sequence of regime realizations over the sample

period relative to agents’ expectations. Hence, consistent with the empirical evidence, we should

expect waves of over- and under-reaction to current information across rolling windows as the

sequence of regime realizations changes. We illustrate with Monte Carlo simulations that within

the context of this simple data-generating process, these waves can be sizable and that convergence

of regime realizations to the unconditional distribution is slow, exceeding the available time series

of survey expectations of macro aggregates.

To move beyond a simple critique of forecast error regressions, Section 4 proposes a regime-

robust test of FIRE. The test consists of first building the distribution of forecast error regression

coefficients with simulated data from a FIRE model with regime shifts and then computing the

significance level at which the empirical regression coefficient estimates allow one to reject the null

of FIRE. The test is similar in spirit to simulation-based tests of rational expectations models with

imperfect information and learning by Andolfatto, Hendry, and Moran (2008) and Adam, Marcet,

and Beutel (2017). Different from these tests, however, our test is applied to FIRE models with

regime shifts and takes into account not only finite sample uncertainty but also uncertainty about

the data-generating process and the sequence of realized regimes.

Section 5 generalizes the analysis to any Markov-switching FIRE model with a minimum state

variable solution. We show that ex-post forecast errors are typically a complicated function of

the current state of the economy and the sequence of realized regimes over the entire forecast

horizon. The result confirms the predictability of ex-post forecast errors in FIRE models with
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regime shifts. At the same time, the result implies that simple univariate forecast error regressions

as used in literature are generally subject to omitted variable bias because the variables used in

these regressions do not span the information set that agents use. This means that even if one

abstracts from the fact that regime realizations are generally unobserved, forecast error regression

estimates do not have a structural interpretation and are therefore not informative about the

underlying expectations data-generating process.

Finally, section 6 applies the regime-robust test of FIRE to a medium-scale New Keynesian

model along the lines of Christiano, Eichenbaum, and Evans (2005), Smets and Wouters (2007),

and Justiniano, Primiceri, and Tambalotti (2011) augmented with Markov regime shifts in the

monetary policy interest rate rule as proposed by Bianchi (2013). We estimate the model with

Bayesian likelihood-based techniques on US macro aggregates. The model, which is considered a

benchmark for modern business cycle analysis and monetary policy, fits post-World War II macro

dynamics reasonably well. We find that based on this data-generating process, the test fails to

decisively reject the null of FIRE. Conditional on the observed macro aggregates, the model also

generates sizable waves of over- and under-reaction of expectations to current information over

rolling sample windows. Regime shifts in monetary policy play only a small role for these waves,

however, and conditional on the observed macro data, the model implies waves that are generally

quite different from the empirical estimates. This represents a clear challenge for the model,

thus providing a new empirical motivation to consider data-generating processes with a richer

regime shift structure (e.g., in trend inflation and/or trend growth) and/or alternative theories of

expectations formation.

The paper is related to several literatures. As reviewed in Section 2, the paper contributes to a

burgeoning literature on the predictability of survey-based forecast errors of macro aggregates. The

key insight of our analysis is that in the presence of regime shifts, predictable forecast errors are

not a sufficient condition to reject FIRE. As already emphasized, we do not interpret this result as

a critique of alternative theories of expectations formation. Our point instead is that reduced-form

forecast error regressions on their own are not informative about alternative expectations theories

relative to FIRE.

The result shares clear parallels with an earlier asset pricing literature on tests of the effi-

cient markets hypothesis in the presence of so-called peso problems, i.e., anticipated changes in

the probability distribution of asset prices. See, for instance, Rietz (1988); Engel and Hamilton
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(1990); Cecchetti, sang Lam, and Mark (1993); Kaminsky (1993); Evans and Lewis (1995a, 1995b);

Bekaert, Hodrick, and Marshall (2001); and Barro (2006).5 The main difference of our paper rel-

ative to this literature is that we study the consequences of regime shifts for the predictability

of ex-post forecast errors in a modern Dynamic Stochastic General Equilibrium (DSGE) context,

propose a formal regime-robust test of FIRE, and apply the test to an estimated medium-scale

DSGE model with plausible regime shifts.

The paper also contributes to a recent literature that analyzes the extent to which learning in an

equilibrium context can explain salient features of survey-based forecast errors of macroeconomic

aggregates. Aside from the work by Andolfatto, Hendry, and Moran (2008) and Adam, Marcet,

and Beutel (2017) mentioned above, the paper perhaps most closely related to ours is King and Lu

(2021), who propose a model with endogenous regime shifts in monetary policy and private sector

learning to account for the rise and fall in US inflation and the concomitant dynamics of inflation

forecast errors in the SPF. Other related papers are Farmer, Nakamura, and Steinsson (2023),

who propose a model of professional forecasters who learn about low-frequency features of the

underlying data-generating process to account for various “forecast anomalies,” and Andolfatto

and Gomme (2003); Davig (2004); Schorfheide (2005); Bullard and Singh (2012); Richter and

Throckmorton (2015); and Foerster and Matthes (2022), among others, who introduce imperfect

information and learning into otherwise rational expectations DSGE models with Markov regime

shifts. The distinguishing feature of our analysis is to show that even with perfectly informed

rational agents, regime shifts can generate predictable forecast errors.

2 Empirical evidence on survey-based forecast errors

In this section, we provide a brief review of the empirical evidence on the predictability of survey-

based forecast errors. Then we document that survey-based forecasts exhibit waves of over- and

under-reaction to current information across rolling sample windows.

5The name peso problem goes back to the empirical puzzle that forward rates on the Mexican peso traded below
the dollar exchange rate for much of the early 1970s even though the peso was pegged to the dollar. Then, in 1976,
the peso was allowed to float and depreciated by almost 50 percent. Ex-post, the forward-spot rate difference prior
to the devaluation looks like a predictable forecast error, but ex-ante it is consistent with rational expectations
under the assumption of regime shifts. See Lewis (2008) for a review.
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2.1 Reduced-form forecast error regressions

A large literature documents that survey-based expectations of macroeconomic aggregates are

often biased and that ex-post forecast errors – the difference between actual realizations and ex-

ante forecasts – are autocorrelated in systematic and quantitatively important ways. See, for

example, the reviews by Croushore (2010) and Coibion, Gorodnichenko, and Kamdar (2018) as

well as the references therein. While these results were initially greeted with skepticism, they have

over time gained increasing acceptance as evidence against FIRE, reflecting either inefficient use of

information by forecasters (departures from rationality) or sticky information/costly information

acquisition (departures from full information) or both.6

More recently, the literature has expanded on this empirical evidence by estimating linear

regressions of ex-post forecast errors for prominent macroeconomic aggregates (e.g., inflation and

output growth) on information available at the time of forecast. For instance, Angeletos, Huo, and

Sastry (2020) and Kohlhas and Walther (2021), among others, estimate

yt+h − Ftyt+h = θ + γyt + et+h, (1)

where yt+h − Ftyt+h denotes the ex-post forecast error about the time t + h realization of some

macro aggregate of interest, yt+h, relative to its forecast at the end of period t and the beginning of

period (t+1), Ftyt+h; yt is the current realization known to agents at the time of forecast; and et+h

is an error term. In turn, Coibion and Gorodnichenko (2015), followed by Bordalo et al. (2020),

Angeletos, Huo, and Sastry (2020), and Kohlhas and Walther (2021), among others, estimate

yt+h − Ftyt+h = ω + δ (Ftyt+h − Ft−1yt+h) + et+h, (2)

where Ftyt+h−Ft−1yt+h denotes the ex-ante forecast revisions reflecting news known to the agents

at the time of forecast.7

6See Mincer and Zarnowitz (1969), Friedman (1980), Nordhaus (1987), Maddala (1991), Croushore (1998),
and Schuh (2001) for early examples of the former perspective, and Mankiw and Reis (2002), Mankiw, Reis, and
Wolfers (2003), Sims (2003), Woodford (2003), and Mackowiak and Wiederholt (2009) for early examples of the
latter perspective.

7We note that Ftyt+h denotes the forecast about yt+h given information available at the end of period (t − 1)
and the beginning of period t. Hence, the subscript t in Ft denotes the period when information becomes available
to the professional forecasters (end of period t), and not the period when they report the forecast (beginning of
period t+1). This notation is different from the one in Coibion and Gorodnichenko (2015), Ftyt+3,where t denotes
the period when forecasters report the forecast.
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The OLS estimate γ̂T of regression (1) is often found to be negative, although the significance

and even the sign of the estimate depends on the macro aggregate, forecast horizon, and sample

period considered. The OLS estimate δ̂T of regression (2), by contrast, is typically positive and

significant.8 These estimates are frequently interpreted as evidence that agents simultaneously

over-react to the current state of the economy but under-react to news, which has led different

authors to propose new theories of expectations formation based on information rigidity (Angeletos,

Huo, and Sastry (2020)) or asymmetric attention (Kohlhas and Walther, 2021).

Table 1: Forecast error regression estimates for US inflation and output growth

Panel A: yt+4 − Ftyt+4 = θ + γyt + et+4

Full sample 1970:2-2019:1 Subsample 1983:1-2019:1

γ̂T σγ̂T p(γ = 0) γ̂T σγ̂T p(γ = 0)

Output growth −0.105 0.065 0.107 −0.049 0.092 0.594

Inflation 0.049 0.070 0.480 −0.169 0.070 0.017

Panel B: yt+4 − Ftyt+4 = ω + δ(Ftyt+4 − Ft−1yt+4) + et+4

Full sample 1970:2-2019:1 Subsample 1983:1-2019:1

δ̂T σδ̂T p(δ = 0) δ̂T σδ̂T p(δ = 0)

Output growth 0.717 0.232 0.002 0.507 0.299 0.092

Inflation 1.010 0.459 0.029 0.111 0.221 0.617

Notes: The table reports OLS coefficient estimates, HAC-robust standard errors, and p-values of the null that the coefficients are zero
for regressions of four-quarter ahead ex-post forecast errors of US inflation and US output growth on current realizations and current
forecast revisions of the two variables, respectively. See the text for details on the data construction. HAC-robust standard errors are
computed using the Newey-West estimator with bandwith set equal to 5.

To fix ideas and set the stage for the rest of paper, we reproduce some of these regression esti-

mates for inflation and output growth. Following Coibion and Gorodnichenko (2015), Angeletos,

Huo, and Sastry (2020), and Kohlhas and Walther (2021), among others, we use quarterly data

from the SPF and focus on four-quarters-ahead forecasts. The sample covers the period 1970:2-

2019:1.9 We measure inflation at time t (i.e., yt in the above notation) as the average quarterly

8Some studies compute forecast errors by averaging forecasts across survey participants, while other studies use
individual forecasts and estimate the two regressions with individual fixed effects. The results are typically very
similar. Bordalo et al. (2020) and others, in turn, estimate regression (2) as a panel using individual forecast errors
yt+h − Fityt+h and individual forecast revisions Fityt+h − Fit−1yt+h. They report negative as opposed to positive
estimates of δ. As Angeletos, Huo, and Sastry (2020) and Kohlhas and Walther (2021) point out, however, the sign
of this estimate depends on the treatment of outliers in the individual forecast data and the sample period.

9Note that to construct annual forecast error data, we use data realizations up to period 2020:1.
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growth rate of the real-time GDP deflator over the last four quarters (i.e., time t − 4 to t) and

repeat the same computation with chain-weighted real GDP to measure output growth. To con-

struct four-quarters-ahead, that is annual, forecasts, we use the consensus forecasts and average

the forecasts at time t about quarterly inflation (similarly for output growth rates) in the end of

periods (t + 1), (t + 2), (t + 3), and (t + 4). We then compute forecast errors as the difference

between the average quarterly growth rate of the real-time GDP deflator over the last four quarters

(i.e., time (t+1) to (t+4)) and the annual inflation forecast.10 For all observed realizations, we use

real-time data because final revised data may reflect reclassification and information not available

at the time of the forecast (see Croushore, 2010). Following the above literature, we do not correct

the estimates for finite sample bias and use HAC-robust standard errors for inference.11

Table 1 reports the results both for the full sample and what we call the post-1970s subsample

that starts in 1983:1 and ends in 2019:1, a period associated with low inflation and low output

growth volatility.

As shown in Panel A, while the OLS estimate γ̂T of regression (1) is negative for both the full

sample and the post-1970s sample for the case of output growth, the sign switches for the case

of inflation. Except for the case of inflation for the post-1970s subsample, one cannot reject the

null of zero prediction at high significance levels. As discussed in Kohlhas and Walther (2021),

however, the negative sign and significance of γ̂T is somewhat more robust for samples starting

in the mid-1980s and ending before the 2008-09 Great Recession, and when inflation is measured

with the consumer price index (CPI) as opposed to the GDP deflator.

As shown in Panel B, the OLS estimates δ̂T of regression (2) are generally positive and, at least

for the full sample, highly significant, thus confirming the results in Coibion and Gorodnichenko

(2015). At the same time, the magnitude of the estimates declines considerably for the post-1970s

subsample and, for the case of inflation, the estimate becomes insignificant.

10Similarly, to construct Ft−1yt+4, we average the forecasts at time (t− 1) about quarterly inflation and output
growth rates at the end of periods (t + 1), (t + 2), (t + 3), and (t + 4). The way we construct forecasts and
forecast errors is similar to Coibion and Gorodnichenko (2015) and Kohlhas and Walther (2021), with some minor
differences. The former compute annual forecast errors by averaging the one- through four-quarters-ahead forecast
errors. The latter, instead, rely on the forecast about the level of the GDP deflator and real output growth to
construct forecasts about the annual growth rates, by computing the growth rate between the forecast about the
level in period (t+ 4) and the forecast about the level in period (t+ 1).

11OLS coefficient estimates are biased in finite samples if the regressors are not strictly exogenous. As discussed in
Section 3, strict exogeneity is typically violated for the type of regressions in (1) and (2), independent of whether the
data-generating process contains regime shifts or not. Other studies such as Adam, Marcet, and Beutel (2017) bias-
correct their estimates in a related context. The regime-shift robust test that we propose in Section 4 automatically
takes finite sample bias into account.
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2.2 Waves of over- and under-reaction

To investigate the variation in the predictability of forecast errors further, we estimate each of the

above regressions over rolling 40-quarter samples. Figure 1 reports the point estimates (solid blue

lines) with associated 90 percent confidence intervals (blue shaded areas).

Figure 1: Waves of over- and under-reaction in SPF data

Notes: The plots show 40-quarter rolling regression coefficient estimates of four-quarters-ahead ex-post forecast errors of US output
growth and US inflation on current realizations and current forecast revisions of the two variables. See the text for details on the
data construction. The blue shaded areas show 90 percent confidence bands based on HAC-robust standard errors computed using the
Newey-West estimator with bandwidth set equal to 5. The estimates are centered at the midpoint of the rolling regression window (e.g.,
1980 denotes the regression window 1975:1 to 1984:4).

The figure provides evidence of large waves of over- and under-reaction to current information.

As shown in panels (a) and (c), forecast errors for output growth are essentially unrelated to

current realizations from the 1970s to the early 1990s, positively associated during the 1990s,

and then negatively associated during the 2000s. In turn, forecast errors of output growth are

mostly positively associated with current forecast revisions, although there is a marked downward

swing from the late 1980s through the mid-1990s and the estimates are generally surrounded by

considerable uncertainty.
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Panels (b) and (d) show even larger waves in the regression coefficients for inflation. During

the 1970s and then again from the 1990s to the mid-2000s, inflation forecast errors are predicted

to be significantly negatively related to current realizations but significantly positively related to

forecast revisions of inflation. In the 1980s as well as from the mid-2000s onward, inflation forecast

errors are less strongly related to the two predictors.

We view these waves of over- and under-reaction across rolling sample windows as an interesting

new stylized fact. On the one hand, some of the waves could be due to small sample uncertainty.

On the other hand, the magnitude of the waves seems too large to be solely explained by the

data.12 This presents a challenge for theories of forecast error predictability based on departures

from FIRE alone, as these theories imply constant over- or under-reaction to current information.

In what follows, we therefore explore the potential of an alternative explanation based on regime

shifts.13

3 Predictable forecast errors in a univariate model

This section considers a univariate FIRE model, first without regime shifts and then with regime

shifts. While too simple from an empirical standpoint, the model has the advantage that the

relationship of forecast errors to current information can be derived analytically and has clear

intuition.

3.1 No regime shifts

Consider an endogenous variable of interest yt with the following FIRE solution

yt = axt, (3)

12We formally explore this possibility in the next section. We also note that large waves of over- and under-
reaction are obtained with larger rolling windows (e.g., 60 quarters).

13We note that there are also large swings in the estimates of the regression constants θ̂ and ω̂ across rolling
sample windows. This indicates time variation in the average bias of forecasts. Furthermore, the estimates γ̂ and
δ̂ can vary substantially depending on whether the regression includes additional variables (either other macro
aggregates or lagged values of the variable forecasted). While less relevant for our motivation of exploring the
implications of regime shifts, we show in the generalized framework in Section 5 how regime shifts in FIRE models
can also lead to non-zero biases that are time-varying across rolling sample windows and to coefficient instability
with respect to additional regressors.
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where the exogenous variable xt evolves according to

xt = ϕxt−1 + εt, (4)

with ϕ ∈ [0, 1) and εt ∼ i.i.d.(0, σ2).14

Given (3) and (4), FIRE implies that for any horizon h ≥ 1, agents’ forecasts of xt+h conditional

on information at time t are

Etyt+h = aϕhxt, (5)

and ex-post forecast errors can be expressed as

yt+h − Etyt+h = aϕhxt + a
h∑

τ=1

ϕh−τεt+τ − aϕhxt = a
h∑

τ=1

ϕh−τεt+τ . (6)

In the absence of regime shifts, ex-post forecast errors under FIRE are a linear combination of i.i.d.

innovations {εt+τ}hτ=1 that are unpredictable based on current information; i.e., E [(yt+h − Etyt+h) yt] =

aE
[(∑h

τ=1 ϕ
h−τεt+τ

)
yt

]
= 0. Intuitively, the portion of ex-post realization yt+h that is predeter-

mined as of t (i.e., aϕhxt) is exactly the same as the agent’s forecast based on information at t and

thus, ex-post forecast errors are unpredictable. Similarly, forecast errors are equally unpredictable

based on news as captured by ex-ante forecast revisions about yt+h from time t− 1 to time t,

Etyt+h − Et−1yt+h = aϕhεt. (7)

As reviewed in Section 5, in the absence of regime shifts, the same result of unpredictable

forecast errors holds for any linear FIRE model. The result constitutes the starting point for the

above-discussed literature documenting that ex-post forecasting errors constructed from survey

data are in fact predictable, a finding that is typically taken as evidence against FIRE.

14Consider, for example, the expectational difference equation yt = βEtyt+1 + ψxt with | β |< 1, ψ ≥ 0 and Et
denoting the rational expectations operator conditional on information at time t. Given the exogenous process in
(4), the FIRE solution for this equation is (3) with a = ψ

1−βϕ .
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3.2 Markov regime shifts

Suppose instead that the FIRE solution in (3) switches between two regimes st ∈ {1, 2}; i.e.,

yt = astxt, (8)

where

ast =

a1 if st = 1

a2 if st = 2

(9)

and that the regime switching is governed by an exogenous Markov process with transition matrix

P =

p11 p12

p21 p22

 , (10)

where pij = Pr(st = j | st−1 = i) with 0 < pij < 1 and
∑2

j=1 pij = 1 for both i, j = 1, 2.15

Two regimes are sufficient for the purpose of this illustration, though the results easily generalize

to many regimes. Also, all results carry through if we allow for regime shifts in the persistence

parameter ϕ of the exogenous process for xt. In this section, we abstract from these generalizations

to keep the example as simple as possible.

Given (8)-(10), FIRE implies that for any horizon h ≥ 1, agents’ forecasts of yt+h conditional

on information at time t (including regime realization st) are given by

Etyt+h =
(
P

(h)
st,1a1 + P

(h)
st,2a2

)
ϕhxt, (11)

where P
(h)
st,st+h is the (st, st+h) element of P h. Hence, agents’ expectations are a weighted average

of regime-conditional forecasts: a1ϕ
hxt if the first regime realizes in t + h, which occurs with

probability P
(h)
st,1, and a2ϕ

hxt if the second regime realizes in t + h, which occurs with probability

P
(h)
st,2.

Based on (11), we derive the following key result:

15Returning to the example from the previous footnote, suppose the parameters {β, ψ} of the expectational
difference equation take on different values across the two regimes st ∈ {1, 2}. Then under conditions described in

Davig and Leeper (2007), the FIRE solution takes the form in (9) with a =
[
a1 a2

]′
= (I2 − ϕβP )−1

[
ψ1 ψ2

]′
and β =

[
β1 0
0 β2

]
.
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Proposition 1. Given the exogenous forcing process (4) and regime-switching model described by

(8)-(10), ex-post forecast errors under FIRE are related to current information by

yt+h − Etyt+h = γ(h)st,st+h
yt + ξt+h, (12)

where γ
(h)
st,st+h ≡

(−1)st+h−1(a1−a2)
(
1−P

(h)
st,st+h

)
ϕh

ast
, and ξt+h ≡ ast+h

∑h
τ=1 ϕ

h−τεt+τ is uncorrelated with

yt. Furthermore, γ
(h)
st,st+h = 0 for any h ≥ 1 if and only if a1 = a2 or ϕ = 0.

Proof. See Appendix A.1.

Proposition 1 establishes that in the presence of Markov regime shifts, ex-post forecasting

errors are systematically predictable even though agents have full information and are fully ra-

tional. Intuitively, and in contrast to the case without regime shifts, the portion of yt+h that is

related to current information (ast+h
ϕhxt) differs from the agents’ forecast because, as described in

(11), agents’ expectations at time t are a weighted average of regime-conditional forecasts. Fore-

cast errors, measured ex-post after regimes have realized, are therefore systematically related to

information xt available at the time of forecast.

Corollary 1 elaborates on the sign of γt,t+h.

Corollary 1. Given the environment in Proposition 1,

sign(γ(h)st,st+h
) =

sign(a1 − a2) if st+h = 1

−sign(a1 − a2) if st+h = 2

(13)

Proof. See Appendix A.2.

Without loss of generality, suppose from here on that a1 > a2; i.e. the first regime is the one

associated with a larger response to exogenous shocks. Hence, γ
(h)
st,st+h > 0 whenever st+h = 1.

Absent regime shifts, a positive value of γ
(h)
st,st+h would be interpreted as forecasters under-reacting

to current information, because of either incomplete information or departures from rationality.

According to Proposition 1 and Corollary 1, by contrast, this under-reaction occurs because fully

informed rational agents ex-ante put non-zero probability on the less responsive regime, thus

attenuating their forecast.

Similarly, we can derive the implications of regime shifts for the relationship between ex-post

forecast errors and news as captured by ex-ante forecast revisions Etyt+h − Et−1yt+h.
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Proposition 2. Given the same environment as in Proposition 1, ex-post forecast errors under

FIRE are related to ex-ante forecast revisions by

yt+h − Etyt+h = δ(h)st,st+h
(Etyt+h − Et−1yt+h) + λ(h+1)

st−1,st+h
yt−1 + ξt+h, (14)

where δ
(h)
st,st+h ≡

(−1)st+h−1(a1−a2)
(
1−P

(h)
st,st+h

)
P

(h)
st: a

, λ
(h+1)
st−1,st+h ≡

(−1)st+h−1(a1−a2)
(
1−P

(h)
st,st+h

)
P

(h+1)
st−1:

a

ϕast−1P
(h+1)
st−1:

a
, and ξt+h

is defined as in Proposition 1.

Proof. See Appendix A.3.

Proposition 2 establishes that in the presence of Markov regime shifts, ex-post forecast errors

under FIRE are also systematically predictable by ex-ante forecast revisions as well as lagged

information. Moreover, note that for this simple univariate model, the sign of δ
(h)
st,st+h is the same

as the sign of γ
(h)
st,st+h given in Corollary 1. As we shall see in Section 5, this result does not

necessarily hold for richer FIRE models with regime shifts.

3.3 Implications for reduced-form forecast error regressions

Given Propositions 1 and 2, we now study the implications of regime shifts for the type of reduced-

form forecast error regressions reported in the literature. Consider first estimating a demeaned

version of regression (1),

yt+h − Ftyt+h = γyt + et+h, (15)

from sample {yt, yt+h − Ftyt+h}Tt=1 generated by the regime-switching model in (8)-(10).16 Under

the assumption that forecasters are fully informed rational expectations agents (i.e., Ft = Et), the

expected ordinary least squares (OLS) estimate of γ conditional on a given sequence of regime

realizations {st}T+h
t=1 is

E
[
γ̂T | {st}T+h

t=1

]
=

∑2
i=1

∑2
j=1 a

2
i γ

(h)
ij F (h)

T (i, j)∑2
i=1 a

2
iFT (i)

+ fsbT , (16)

where ai is defined as in (9); γ
(h)
ij describes the relationship between yt+h − Etyt+h and yt con-

ditional on regime realizations st = i and st+h = j as defined in Proposition 1; F (h)
T (i, j) ≡

16Using demeaned data is consistent with the FIRE solution of the data-generating process in (8). This type
of equation generally arises as the result of log-linearizing optimality conditions of dynamic stochastic problems,
which by definition refer to deviations from the mean. Section 5 considers the generalized framework that includes
regime shifts in constant terms.
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1
T

∑T
t=1 1(st = i, st+h = j) is the sample frequency of these joint regime realizations occurring;

FT (i) ≡ 1
T

∑T
t=1 1(st = i) is the unconditional sample frequency of regime realizations st = i; and

fsbT denotes the expected finite sample bias due to the fact that the regressor yt is not strictly

exogenous.17 Appendix A.4 provides details of the derivation.

Note that the sample frequency of joint regime realizations can be expressed as F (h)
T (i, j) =

f
(h)
ij F (h)

T (j), where f
(h)
ij ≡ 1

T

∑T
t=1 1(st = i|st+h = j) is the sample frequency of regime realization

st = i conditional on regime realization st+h = j. As also shown in Appendix A.4, we can therefore

rewrite the first part of (16) as

E
[
γ̂cT | {st}

T+h
t=1

]
=

ϕh(a1 − a2)

a21(1− f
(h)
22 ) + a22(1− f

(h)
11 )︸ ︷︷ ︸

(+)

[
a1(1− f

(h)
22 )

(
f
(h)
11 − p

(h)
11

)
− a2(1− f

(h)
11 )

(
f
(h)
22 − p

(h)
22

)]
︸ ︷︷ ︸

g(f
(h)
11 ,f

(h)
22 )

,

(17)

where γ̂cT denotes the fact that this is the bias-corrected OLS estimate. By assumption of a1 > a2,

the first part of this expression is positive. Hence, the sign of E
[
γ̂cT | {st}

T+h
t=1

]
is determined by the

sign of g(f
(h)
11 , f

(h)
22 ). This gives rise to the following proposition:

Proposition 3. Consider the same conditions as in Proposition 1 and assume without loss of

generality that a1 > a2. Then under the null hypothesis of FIRE,

1. for a finite sequence of {st}T+h
t=1 characterized by conditional sample frequencies f

(h)
11 and f

(h)
22 ,

E
[
γ̂cT | {st}

T+h
t=1

]
⋛ 0 ⇔ f

(h)
11 ⋛ g(f

(h)
22 ) ≡ a1p

(h)
11 (1− f

(h)
22 ) + a2(f

(h)
22 − p

(h)
22 )

a1(1− f
(h)
22 ) + a2(f

(h)
22 − p

(h)
22 )

;

2. for T → ∞, g(f
(h)
11 , f

(h)
22 ) → 0 and fsbT → 0 ⇒ E

[
γ̂T | {st}T+h

t=1

]
→ E [γ] = 0.

Proof. See Appendix A.4.

The first part of the proposition establishes that in the presence of regime shifts, unpredictabil-

ity of forecast errors is a knife-edge case. Generally, regime realizations {st}T+h
t=1 are such that

either E
[
γ̂cT | {st}

T+h
t=1

]
< 0 or E

[
γ̂cT | {st}

T+h
t=1

]
> 0; i.e. agents look like they over- or under-react to

current information yt. Intuitively, E
[
γ̂cT | {st}

T+h
t=1

]
is a weighted average of the four possible values

17By definition, we have E(ytet+h) = 0; but due to the autoregressive nature of the forcing process (4),
E(yt+ket+h) ̸= 0 for any k > 0. Hence, the OLS assumption for unbiasedness is violated in finite samples. A
similar bias is also present in the absence of regime switching. As discussed in Section 2, the empirical literature
often ignores this bias.
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of γij, two of which are positive (γ11 and γ21) and two of which are negative (γ12 and γ22) . The

weights and therefore the sign of E
[
γ̂cT | {st}

T+h
t=1

]
depend on the conditional sample frequencies

f
(h)
11 and f

(h)
22 of regime realizations {st}T+h

t=1 relative to what agents expect (p
(h)
11 and p

(h)
22 ) as well

as on the values of a1 and a2.

The second part of the proposition establishes that as T increases, the conditional sample

frequencies of regime realizations converge to their population counterparts and therefore agents’

expectations. Hence, periods of over- and under-reaction tend to cancel each other out such

that in the limit, ex-post forecast errors become unpredictable. Similarly, the finite sample bias

vanishes in the limit. The result makes clear that ex-post forecast error predictability remains a

finite sample phenomenon, thus providing a potential new explanation for the observation that in

survey expectation data, ex-post forecast error predictability often declines with longer time series

(see, e.g., Croushore, 1998).

To explore Proposition 3 further, we set the univariate model parameters to a1 = 2, a2 =

0.5, ϕ = 0.9 and consider two sets of transition probabilities: (a) p11 = p22 = 0.7; and (b)

p11 = 0.2, p22 = 0.7. For each case, we compute E
[
γ̂cT | {st}

T+h
t=1

]
for forecast horizon h = 1 across

conditional sample frequencies f
(h)
11 and f

(h)
22 . Figure 2 visualizes the result.

Figure 2: Apparent over- and under-reaction in the presence of regime shifts

Notes: The plots in the two panels show the sign of expected bias-corrected OLS coefficients of regression (15) across conditional regime

realizations f
(h)
11 and f

(h)
22 for different regime transition probabilities p11 and p22. In each plot, the grey region shows combinations for

which E
[
γ̂c
T | {st}T+h

t=1

]
> 0 and the white region shows combinations for which E

[
γ̂c
T | {st}T+h

t=1

]
< 0. The two regions are separated by

the hyperbola f
(h)
11 = g(f

(h)
22 ) in Proposition 3.
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The knife-edge case for which E
[
γ̂cT | {st}

T+h
t=1

]
= 0 is given by the hyperbola f

(h)
11 = g(f

(h)
22 ) sepa-

rating the grey from the white region. In the grey region, f
(h)
11 > g(f

(h)
22 ) and thus E

[
γ̂cT | {st}

T+h
t=1

]
>

0; while in the white region, f
(h)
11 < g(f

(h)
22 ) and thus E

[
γ̂cT | {st}

T+h
t=1

]
< 0. As the different contours

show, the magnitude of these deviations from zero can be substantial even for relatively small

differences of f
(h)
11 from p

(h)
11 , respectively f

(h)
22 from p

(h)
22 .

Proposition 3 implies that, as f
(h)
11 and f

(h)
22 vary across samples, regime shifts can lead to

waves of over- and under-reaction. To illustrate this point, we simulate the univariate model for

500 periods, first without regime shifts and then with regime shifts.18 We then estimate (15) for

rolling window samples of T = 40 periods and, for each of the samples, correct the OLS point

estimate for finite sample bias. To compute the coverage bands, we perform a blind bootstrapping

procedure in order to preserve the regime path pertaining to each rolling sample.19

Figure 3 reports the results. As shown in panel (a), in the absence of regime shifts, the bias-

corrected OLS point estimates are almost never significantly different from zero. This confirms

that in the absence of regime shifts, ex-post predictability of forecast errors is a sufficient condition

to reject FIRE even in relatively small samples.

Panel (b) shows bias-corrected estimates for the data generated with regime shifts. There are

much larger and often significant swings across the rolling sample windows. This illustrates that

regime shifts can lead to waves of over- and under-reaction across rolling sample windows, and

thus, ex-post predictability of forecast errors is not a sufficient condition to reject FIRE.

18For the simulation without regime shifts, we set a = 1.25 and choose ϕ = 0.9, σε = 1. For the simulation with
regime shifts, we keep the exogenous forcing process unchanged and set a1 = 2, a2 = 0.5 with Markov transition
probabilities p11 = p22 = 0.7. Similar results would obtain for other parameterizations.

19To correct for finite sample bias, we simulate i = 1, ..., 10, 000 new samples of 500 periods, preserving the
original sequence of regime realizations for each of the samples. For each 40-period rolling window, we then

compute the model-implied finite sample bias fsbiT =
∑t+39

τ=t (yiτ−ȳ
i
t:t+39)(ξ

i
τ+1−ξ̄

i
t+1:t+40)∑t+39

τ=t (yτ,n−ȳt:t+39,n)2
across the different samples

i, and subtract the average bias fsbT =
∑10,000
i=1 fsbiT /10, 000 from the OLS estimate. Using the bias-corrected

OLS point estimates, we compute the fitted values of the regression in (15) as well as the standard deviation of the
regression error terms for each rolling sample of simulated data. From a normal distribution with that standard
deviation and mean 0, we generate N = 1000 i.d.d. innovations, and add those disturbances to the fitted values
to generate 1000 new datasets of the dependent variable. Preserving the regressor, we re-estimate (15) and bias-
correct the point estimates for finite sample bias using the model-implied bias averaged across the 1000 simulations.
Finally, for each rolling sample we isolate the bottom and top 5 percent bias-free estimates to compute the 90
percent coverage bands.
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Figure 3: Waves of over- and under-reaction in simulated data

Notes: Panel (a) shows average bias-corrected OLS coefficient estimates and 90% coverage bands of regression (15) for rolling windows
of 40 periods with data generated from the univariate model under FIRE without regime shifts. Panel (b) shows results for the same
rolling window regressions, but with data generated from the univariate model under FIRE with regime shifts.

Proposition 3 also raises the question of what sample size T is large enough for ex-post forecast

error predictability to vanish. To provide an answer, we simulate the univariate model 10,000

times for different sample sizes, each time with a different sequence of regime realization drawn

from transition matrix P . For each sample size T , we then average the absolute values of the

bias-corrected OLS estimates γ̂T across simulations.

As shown in Figure 4, deviations from the asymptotic value of γ = 0 are on average small for the

no-regime shift case, even in small samples, and γ̂T converges quickly to 0. For the case of regime

shifts, in contrast, deviations from the asymptotic value of γ = 0 are an order of magnitude larger

and die out at a lower rate as T becomes large. Hence, at least in the context of the univariate

model, the typical sample size for which we have expectations data of macroeconomic aggregates

(100 to 200 quarters) is unlikely to be large enough for reduced-form forecast error regressions to

be characterized by asymptotic properties.
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Figure 4: Average predictability of ex-post forecast errors by sample size

Notes: Panel (a) shows average absolute values of bias-corrected OLS estimates γ̂T for different sample sizes T with data generated
from the univariate model under FIRE without regime shifts. Panel (b) shows results for the same regressions, but with data generated
from the univariate model under FIRE with regime shifts.

Finally, consider estimating a demeaned version of regression (2),

yt+h − Ftyt+h = δ (Ftyt+h − Ft−1yt+h) + et+h. (18)

Different from regression (15), there is no equivalent closed-form solution that allows one to express

the expected coefficient estimate E
[
δ̂T | {st}T+h

t=1

]
as a weighted average of the four values of δ

(h)
ij

describing the relationship between forecast errors yt+h − Etyt+h and forecast revisions Etyt+h −

Et−1yt+h conditional on regime realizations st = i and st+h = j. This is because, according to

Proposition 2, forecast errors are a function of not only forecast revisions but also lagged outcomes

yt−1, and because forecast revisions by themselves do not span the information set that agents use

to forecast yt+h.
20 Hence, the coefficient estimate of δ is subject to omitted variable bias. As we

20To see this second point, note that by (11), Etyt+h − Et−1yt+h is a function of the difference between xt and
xt−1. Hence, information of Etyt+h − Et−1yt+h alone does not allow the econometrician to predict forecast errors.
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show in Section 5, this issue of omitted variable bias is pervasive for more general FIRE models

with regime shifts, and applies not only to forecast error regressions on forecast revisions as in (15)

but also on forecast error regressions on current realizations as in (18).

Summing up, the analysis of this section yields two important insights. First, in the presence

of regime shifts, forecast error predictability is not a sufficient condition to reject FIRE. Second,

in the presence of regime shifts, the coefficient estimates of the type of forecast error regressions

used in the literature are complicated functions of the sample sequence of regime realizations that

are generally unobserved by the econometrician. This implies that forecast error regressions by

themselves are not informative about alternative theories of expectations formation. While we

derive this result for the case of FIRE, the same result would obtain under the assumption of

imperfect information or departures from rationality as long as expectations are at least partly

forward-looking. We view this as an important point since the recent empirical literature has

used these regressions to argue in favor of or against specific forms of information frictions and

departures from rationality (e.g., Coibion and Gorodnichenko, 2015; Angeletos, Huo, and Sastry,

2020; or Kohlhas and Walther, 2021).

4 A regime-shift robust test of FIRE

The above results imply that in the presence of regime shifts, standard statistical tests of FIRE

based on reduced-form regressions are misspecified, both because the null of unpredictability of

forecast errors is violated in finite samples, and because the usual standard errors do not take

into account the uncertainty implied by regime shifts. Here, we propose a new regime-shift robust

test that – given an underlying data-generating process (DGP) – allows one to assess the FIRE

hypothesis with the type of reduced-form regressions used in the literature. The test is similar in

spirit to simulation-based tests of RE models with imperfect information by Andolfatto, Hendry,

and Moran (2008) or Adam, Marcet, and Beutel (2017). Different from these tests, however, our

test is applied to FIRE models with regime shifts and takes into account not only finite sample

uncertainty but also uncertainty about the DGP and uncertainty about the regime path. Here,

we illustrate the test with the simple univariate model from the previous section. In Section 6, we

then apply the test to the empirically more relevant case of a medium-scale DSGE model.

Consider the univariate FIRE model with regime shifts given by (4) and (8)-(10), with uncer-
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tainty about this DGP characterized by the posterior parameter distribution P (Θ|Z) estimated

based on data Z.21 To simulate the finite sample distribution of the reduced-form regression esti-

mates γ̂T and δ̂T under this null, we proceed in three steps: (i) draw n = 1, ..., N parameter vectors

Θn from P (Θ|Z); (ii) for each Θn, simulate k = 1, ..., K samples of observations
{
yn,kt

}T+h

t=1
and{

Ety
n,k
t+h

}T

t=1
from the DGP defined by Θn; and (iii) estimate γ̂n,kT and δ̂n,kT for each of these sam-

ples. The resulting distributions can then be used to compute the probability that the simulated

γ̂n,kT , respectively δ̂n,kT , are larger in absolute value than the γ̂T , respectively δ̂T , estimated from

observed data. This provides a p− value for a t-test of the null of FIRE.

Several comments are in order about this procedure. First, by simulating artificial samples

based on different parameter draws of P (Θ|Z), the procedure incorporates uncertainty about the

DGP. Second, the simulation of artificial samples in step (ii) is non-standard because of the need

to incorporate the uncertainty about the sequence of realized regimes. We do so by drawing regime

realizations
{
sn,kt

}T+h

t=1
for each sample k from the smoothed probabilities P̂ r(st | ZT ; Θ

n) implied

by the DGP and the data ZT over the sample period t = 1, ...T used to estimate the reduced-

form regressions.22 Third, the procedure naturally provides us with the finite sample distribution

of regression coefficients γ̂T and δ̂T . Hence, we do not need to bias-correct the estimates (e.g.,

through bootstrapping), and we can conduct inference without assuming normality.

To implement the procedure, we estimate P (Θ|Z) with standard Bayesian techniques using

data for US output growth from 1969:3 to 2020:1. The posterior modes of the different parameters

are: ϕ = 0.87, σ = 0.29, a1 = 5.27, a2 = 1.77, p11 = 0.98, and p22 = 0.98; i.e., the estimation

attributes very strong persistence to both regimes.23 Conditional on this DGP, we then compute

the test over the sample 1970:2-2019:1 used in Section 2 to estimate the forecast error regressions,

with forecast horizon set to h = 4.

21For the univariate FIRE model with regime shifts, Θ = [ϕ, σ, a1, a2, p11, p22]
′. Given that under the null, there

exists an invariant DGP, the data Z used to estimate P (Θ|Z) may cover a larger period than the sample YT used

to estimate γ̂T and δ̂T . These data may also include different variables than the ones used to estimate γ̂T and δ̂T .
22Alternatively, for each parameter draw Θn and simulation run k, one could draw unconditional regime realiza-

tions using the Markov transition matrix associated with Θn. However, this approach would not take into account
that the test we want to implement is conditional on a sequence of regime realizations associated with the sample
period t = 1, ...T .

23The estimation can be implemented either by treating xt as unobserved or by measuring xt with an observable.
Since we do not want to impose additional assumptions on the nature of xt, we treat it as unobserved and use the
Kalman and Hamilton filters as described in Kim and Nelson (1999) for estimation. See Appendix B for details.
Note that the data strongly prefer the univariate model with regime shifts over the alternative without regime shifts.
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Figure 5: Regime-shift robust test of FIRE for the case of output growth

Notes: Panel (a) shows the sample distributions of the OLS estimate of forecast error regression (1) for the case of output growth
under the usual empirical null of E [γ̂T ] = 0 and HAC-robust standard errors (dashed black lines) and under the null that the data were
generated by the univariate FIRE model with regime shifts (red shaded area). Panel (b) shows the corresponding distributions of the
OLS estimate of forecast error regression (2). The sample for both panels (a) and (b) is 1970:2-2019:1.

Figure 5 visualizes the results. The solid black lines show the OLS point estimates γ̂T = −0.105,

respectively δ̂T = 0.717 from Table 1, and the dashed black lines show the HAC-robust distributions

of these estimates under the standard null of H0 : γ = 0 and H0 : δ = 0. The red shaded areas

show the simulated distributions of γ̂T and δ̂T under the null that the data were generated by the

estimated univariate FIRE model with regime shifts. These distributions are shifted to the left of

the empirical distributions with E [γ̂T ] < 0 and E
[
δ̂T

]
< 0 both because of negative finite sample

bias and because E
[
γ̂cT | {st}

T+h
t=1

]
< 0 on average across the simulated sequences of {st}T+h

t=1 .
24 This

is not a general result, however. As discussed above and elaborated upon further in the next

24There are two reasons why E
[
γ̂cT | {st}

T+h
t=1

]
< 0 on average in the present case. First, the conditional sample

frequencies f
(h)
11 and f

(h)
22 implied by the simulated sequences of {st}T+h

t=1 are on average smaller than the esti-

mated transition probabilities p
(h)
11 and p

(h)
22 that agents use according to the model to form expectations. Second,

E
[
γ̂cT | {st}

T+h
t=1

]
is a non-linear function of f

(h)
11 , f

(h)
22 , p

(h)
11 and p

(h)
22 . Hence, even if f

(h)
11 equaled p

(h)
11 and f

(h)
22 equaled
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section, E [γ̂T ] and E
[
δ̂T

]
can differ in sign due to omitted variable bias, depending on the DGP

and the distribution of regime sequences {st}T+h
t=1 across simulations.

As shown in panel (a), the OLS estimate of γ̂T is in the left tail of the standard distribution

associated with H0 : γ = 0, implying a p-value of 0.11 in a two-sided t-test (twice the area under

the dashed distribution to the left of γ̂T ). According to the usual assumption of unpredictable

forecast errors (and ignoring finite sample bias), a researcher would therefore reject the null of

FIRE at a significance level of 11 percent.

Based on the regime-shift robust test with the univariate FIRE model, in contrast, the estimate

of γ̂T implies a p-value of 0.45 (the area under the shaded distribution to the left of γ̂T plus the

corresponding area to the right of 2 (E [γ̂T ]− γ̂T ). Hence, a researcher would not be able to reject

the null of FIRE at a reasonable significance level. There are two reasons for this difference. First,

the distribution is shifted to the left of the standard null; second, the distribution is wider than

what is implied by HAC-robust standard errors.

Turning to panel (b), the OLS estimate of δ̂T is in the far right tail of not only the standard

HAC-robust distribution associated with H0 : δ = 0 but also the distribution implied by the

estimated univariate FIRE model with regime shifts. Hence, the p-value associated with both the

empirical distribution and the simulated distribution is essentially 0 under either null. Based on

the regression of forecast errors on forecast revisions, a researcher would therefore reject FIRE

with a high degree of confidence.

It is important to emphasize, however, that this rejection is conditional on the particular uni-

variate DGP, estimated using US output growth data for 1969:4-2020:1, i.e., a sample that is

essentially the same as the sample over which we simulate data for the reduced-form regressions.

As a result, the simulated conditional frequencies f
(h)
11 and f

(h)
22 are on average close to the p

(h)
11

and p
(h)
22 that agents use to form expectations, implying that regime switching imparts relatively

little departure of E [γ̂T ] and E
[
δ̂T

]
from zero. Moreover, as documented extensively in the liter-

ature (e.g., Stock and Watson, 2002), US output growth during the period experienced essentially

two phases: a high-volatility phase that lasted up to the early 1980s and a low-volatility phase,

commonly known as the Great Moderation, that extended from the early 1980s up to the 2008-09

financial crisis. As a result, the two regimes are not only estimated to be very persistent, as evi-

p
(h)
22 on average, E

[
γ̂cT | {st}

T+h
t=1

]
would on average not equal zero. Appendix B provides further analysis of this

result.
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denced by the posterior modes p11 = 0.98, and p22 = 0.98, but there is also very little uncertainty

surrounding these estimates (see Appendix B). The sequences of realized regimes
{
sn,kt

}T+h

t=1
im-

plied by P̂ r(st | ZT ; Θ
n) are therefore close to invariant across simulations, and the distributions

of f
(h)
11 and f

(h)
22 are narrow. Hence, regime switching in this particular application also imparts

relatively little uncertainty about γ̂T and δ̂T under the null.

Yet, as suggested by the US experience since the 2008-09 financial crisis as well as the experience

of other countries, it is conceivable that these estimates of the regime-switching process may not

be reflective of the true regime-switching process and therefore agents’ expectations under FIRE.

An econometrician may therefore want to consider a wider distribution of p11 and p22 that is, in

addition, centered at lower values. When doing so, we find that it is relatively easy to end up

with a distribution for γ̂T and δ̂T under the null that is both substantially wider and shifted to

the right so that it is no longer possible to reject the hypothesis of FIRE for either of the two

regressions. We return to this point in Section 6 when we implement the proposed test of FIRE

with an estimated medium-scale DSGE model.

5 Generalized framework

In this section, we show that ex-post predictability of forecast errors is a generic feature of any

regime-shift FIRE model with a minimum state variable (MSV) solution. We also show that

forecast errors can no longer be represented by a univariate equation. Instead, the complexity

of the forecast error representation increases with that of the underlying DGP, which has several

important implications.

5.1 Environment

The MSV solution to any FIRE model with regime shifts can be expressed as

Xt = Cst + AstXt−1 +Bstϵt (19)

whereXt is an nx×1 vector of model variables; ϵt is an nϵ×1 vector of innovations with E(ϵtϵ′t) = Σϵ

with Σϵ being a diagonal matrix and E(ϵtϵ′t+h) = 0nϵ×nϵ for any h ̸= 0; and Cst , Ast , and Bst

are conformable matrices that can take on st ∈ {1, 2} different values capturing two possible
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regime realizations in period t that are governed by a Markov transition matrix P . Note that this

formulation allows for regime shifts not only in the dynamics of the different variables but also in

the variables’ trends (e.g., a shift in the inflation target; output growth trend, etc.). An ny × 1

vector of observables Yt is then mapped to the vector of model variables as follows25

Yt = Ψ0 +Ψ1Xt (20)

Proposition 4 provides an expression for the FIRE forecast of Xt+h, for any forecast horizon h > 0.

Proposition 4. Given the MSV solution of the model in (19), the rational expectations forecast

of Xt+h conditional on the full information set available at time t, including the path of regime

realization up to period t, is given by

EtXt+h =Mt,t+h +Qt,t+hXt, (21)

where matrices Mt,t+h and Qt,t+h depend on the regime realized in period t, the transition matrix

P , the forecast horizon h > 0, as well as matrices Ast , Bst, and Cst.

Proof. See Appendix A.6.

Combining this expression for the FIRE forecast of Xt+h with the measurement equation in

(20) then yields the FIRE forecast of the observables’ vector,

EtYt+h = Ψ0 +Ψ1Mt,t+h +Ψ1Qt,t+hXt. (22)

.

5.2 Relationship of forecast errors with current information

Proposition 5 describes ex-post forecast errors about Yt+h as a function of the vector of current

realizations of the endogenous variables of the model, Xt, as well as a function of ex-ante forecast

error revisions of the vector of the endogenous variables of the model, EtXt+h − Et−1Xt+h.

25Adding a vector of measurement errors in (20) would not change any of the results that follow.
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Proposition 5. Given state-space representation (19)-(20) and regime sequence {st, st+1, ..., st+h},

ex-post forecast errors under FIRE for any forecasting horizon h ≥ 1 can be expressed as

Yt+h − EtYt+h = Θt,t+h︸ ︷︷ ︸
bias

+ Γt,t+h︸ ︷︷ ︸
predictability

Xt + ξt+h (23)

and

Yt+h − EtYt+h = Ωt,t+h︸ ︷︷ ︸
bias

+ ∆t,t+h︸ ︷︷ ︸
predictability

(EtXt+h − Et−1Xt+h) + Λt−1,t+h︸ ︷︷ ︸
predictability

Xt−1 + ξt+h, (24)

where Θt,t+h, Ωt,t+h, Γt,t+h, and Λt−1,t+h depend on the ex-post realized regime path {st−1, st, st+1, ..., st+h},

the transition matrix P , forecasting horizon h, as well as matrices Ast , Bst, and Cst, while the error

term ξt+h is uncorrelated with Xt, (EtXt+h − Et−1Xt+h), or Xt−1.

Proof. See Appendix A.6.

Proposition 5 has three important implications. First, it confirms that forecast error bias and

ex-post predictability (with respect to current information or ex-ante forecast revisions) are generic

features of any FIRE model with regime shifts.

Second, comparison of Proposition 5 with Propositions 1 and 2 makes clear that the relationship

of forecast errors with current information in the generalized framework differs in two key aspects

from the univariate example: (i) ex-post forecast errors in the generalized framework depend on

the entire vector Xt of available information at the time of forecast and not just on the realization

of the variable that is being forecasted; and (ii) matrices Γt,t+h and ∆t,t+h linking ex-post forecast

errors to current information Xt and ex-ante forecast revisions EtXt+h − Et−1Xt+h are contingent

on the entire sequence of regime realizations between periods t and t + h, {st, st+1, ..., st+h}, and

not only on the regimes realized in periods t and t+ h.

Third and as alluded to previously in Section 3, Proposition 5 implies that the reduced-form

forecast error regressions considered in the literature will generally be subject to omitted variable

bias. Specifically, consider forecast error regressions (1) and (2) for the ith variable in Y ; i.e.

Yi,t+h − FtYi,t+h = θ + γYit + et+h (25)

Yi,t+h − FtYi,t+h = ω + δ(FtYi,t+h − Ft−1Yi,t+h) + et+h (26)

Since Γt,t+h and ∆t,t+h are generally non-diagonal matrices, Yit and FtYi,t+h − Ft−1Yi,t+h will not
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span all the information in Xt, respectively in EtXt+h − Et−1Xt+h and Xt−1, that fully informed

rational agents use to forecast Yi,t+h. Consequently, Yit and FtYi,t+h −Ft−1Yi,t+h will be correlated

with et+h, resulting in omitted variable bias.

This last result provides a potential explanation for the instability of estimates of γ and δ when

additional regressors are added, as documented in the literature. Moreover, since ∆t,t+h ̸= Γt,t+h,

the expected signs of the estimates of γ and δ may differ from each other. In other words, a

sufficiently rich FIRE model with regime shifts may, depending on the sequence of regime real-

izations, generate simultaneously negative OLS estimates of γ and positive OLS estimates of δ,

as, for example, Coibion and Gorodnichenko (2015), Bordalo et al. (2020), Angeletos, Huo, and

Sastry (2020), and Kohlhas and Walther (2021) have found.

Corollary 2 further explores the consequences of regime shifts for three special cases.

Corollary 2. Proposition 5 nests the following special cases:

1. Suppose that there are regime shifts only in the vector of constants; i.e., C1 ̸= C2, but A1 = A2

and B1 = B2. Then, Γt,t+h = ∆t,t+h = Λt−1,t+h = 0ny×nxand Θt,t+h = Ωt,t+h ̸= 0ny×1.

2. Now, suppose there are regime shifts only in the relationship between endogenous variables

and innovations; i.e., C1 = C2 and A1 = A2, but B1 ̸= B2. Then, Γt,t+h = ∆t,t+h =

Λt−1,t+h = 0ny×nx and Θt,t+h = Ωt,t+h = 0ny×1.

3. Finally, suppose there are no regime shifts; i.e., C1 = C2, A1 = A2 and B1 = B2. Then,

Γt,t+h = ∆t,t+h = Λt−1,t+h = 0ny×nxand Θt,t+h = 0ny×1.

Proof. See Appendix A.7.

If only the vector of constants is subject to regime shifts, then ex-post forecast errors under

FIRE will be biased but not systematically related to current information Xt or to ex-ante fore-

cast revisions EtXt+h − Et−1Xt+h. If regimes apply only to the relationship between the model’s

endogenous variables and innovations, then forecast errors under FIRE will not exhibit any ex-

post predictability.26 Finally, absent regime shifts, forecast errors under FIRE are not predictable

regardless of the complexity of the underlying DGP.

26One can easily show that this result applies if, for instance, one considered Markov regime shifts in the variance
of innovations only.
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6 Application with a medium-scale DSGE-RS model

We finish by assessing the extent to which a Dynamics Stochastic General Equilibrium model with

regime shifts (DSGE-RS) that imposes FIRE and fits macroeconomic dynamics reasonably well

is quantitatively consistent with the reduced-form evidence on the predictability of forecast errors

discussed in Section 2. The model we consider is a medium-scale New Keynesian model along the

lines of Christiano, Eichenbaum, and Evans (2005), Smets and Wouters (2007), and Justiniano,

Primiceri, and Tambalotti (2011) augmented with Markov regime shifts in the monetary policy

interest rate rule as in Bianchi (2013).27 We estimate the model with US macroeconomic aggregates

using Bayesian likelihood-based techniques and then perform the regime-shift robust test of FIRE

proposed in Section 4.

6.1 Model

The economy is populated by a representative household, labor unions, intermediate firms, a final

goods producer, and a monetary policy authority. Households maximize a non-separable utility

function in goods consumption and labor effort, subject to external habit. Households can save via

one-period nominal bonds or investment in physical capital subject to convex adjustment costs.

Capital is rented to intermediate firms on a period-by-period basis at a rate that reflects a convex

cost of time-varying capital utilization. Household members provide labor to unions that transform

labor services into differentiated types and supply them to firms at nominal wages that are subject

to Calvo-type infrequent reoptimization. Intermediate firms, in turn, produce differentiated goods

with labor and capital and supply the goods to final producers at nominal prices that are subject

to Calvo-type infrequent reoptimization. Non-reoptimized nominal wages and prices are partially

indexed to lagged inflation. The monetary authority, finally, sets interest rates as a function of

lagged interest rates, output growth, inflation, and an exogenous shock. Aside from this monetary

policy shock, the economy is also subject to exogenous shocks to the household discount factor,

government spending, total factor productivity, investment-specific technology, as well as wage and

price markups.

27Bianchi (2013) also allows for regime shifts in the volatility of exogenous shocks. Since regime shifts in
monetary policy are found to be more important to account for post-WW2 macroeconomic dynamics, we abstract
from regime shifts in the volatility of exogenous shocks, although such an extension as well as other regime shifts
could in principle be incorporated. See the end of the section for further discussion.
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To save on space, we refer the reader to Smets and Wouters (2007) for details and provide a

list of log-linearized equilibrium equations in Appendix C.1. The only main difference from the

Smets-Wouters model is that we allow the interest rate rule of monetary policy to shift between

two regimes; i.e.,

Rt = ϕr
stRt−1 + (1− ϕr

st)
(
ϕ∆y
st ∆yt + ϕπ

stπt
)
+ vt, (27)

where Rt denotes the nominal short-term interest rate; ∆yt is real output growth; πt is inflation

(all in deviations from their long-run average values); and vt is the exogenous monetary policy

shock. The response coefficients ϕr
st , ϕ

∆y
st and ϕπ

st follow an exogenous two-state Markov process

st ∈ {1, 2} with transition matrix

P =

p11 p12

p21 p22

 , (28)

where, as in Section 3, pij = Pr(st = j | st−1 = i) with 0 < pij < 1 and
∑2

j=1 pij = 1 for both

i, j = 1, 2.

6.2 Model solution and estimation

We solve the model under FIRE and estimate the parameters, including the Markov transition

probabilities, with Bayesian likelihood-based techniques using quarterly US data for output growth,

consumption growth, investment growth, real wage growth, labor hours, inflation, and the federal

funds rate from 1964:3 to 2020:1.28 Priors for the different model parameters are set similar to

those in Smets and Wouters (2007), while priors for the monetary policy and regime transition

parameters are similar to those in Bianchi (2013).29

Table 2 reports the estimated posterior distribution characteristics for the monetary policy

parameters in each of the two regimes as well as the regime transition probabilities. Table 5 and

Figure 8 in Appendix C.2 provide information on the prior and posterior distributions for all other

28In principle, we could also use SPF or other forecast data to estimate the model. This would require us to either
drop some of the macro aggregates used in the estimation or add more shocks so as to avoid stochastic singularity.
More fundamentally, we refrain using forecast data in the estimation because we want to assess whether the estimated
model, conditional on observed macro aggregates, implies expectations consistent with average forecasts in the data.

29We use the RISE Matlab toolbox developed by Maih (2015) to solve and estimate the model. In the case of
constant and exogenous transition probabilities, the RISE solution algorithm is similar to Farmer, Waggoner, and
Zha (2011), with the difference that RISE relies on perturbation methods to find the model solution. The estimated
posterior distribution is based on the Metropolis-Hastings algorithm with a single chain of 500,000 draws, after
discarding 100,000 initial draws. The acceptance rate is about 35 percent; and the posterior distributions of all the
estimated parameters are generally well-behaved. See Appendix C.2 for details.
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parameters.

Table 2: Posterior distribution estimates of monetary policy rule

ϕπ
1 ϕπ

2 ϕy
1 ϕy

2 ρ1 ρ1 p11 p22

mean 2.63 0.77 0.40 0.62 0.64 0.07 0.85 0.71
mode 2.44 0.81 0.42 0.44 0.61 0.06 0.89 0.60
5% 2.28 0.58 0.20 0.42 0.57 0.02 0.92 0.89
95% 3.00 0.83 0.58 0.88 0.75 0.14 0.75 0.58

Notes: The table reports the mean, mode, as well as the 5th and 95th percentiles of the posterior distribution of the monetary policy
rule parameters in (27) and the Markov transition probabilities in (28), based on 500,000 draws from the Metropolis-Hastings algorithm.

Consistent with Bianchi (2013), we find that one monetary policy regime is more active (regime

1) in the sense that the central bank is estimated to respond aggressively to inflation, whereas the

other regime is significantly more passive (regime 2). The response of monetary policy to output

growth in both regimes is similar, whereas the persistence of nominal interest rates is significantly

higher in the more aggressive regime. The aggressive regime is estimated to be highly persistent,

whereas the passive regime is estimated to be somewhat less persistent.

Figure 6 shows the smoothed regime probabilities for the more aggressive regime as implied

by the posterior mode and the data. In line with the common narrative of US monetary history

and the results in Bianchi (2013), the estimates imply that monetary policy was primarily in the

passive regime (regime 2) during the 1970s and then turned active (regime 1) in the early 1980s

during the Volcker years. Active monetary policy continued from the 1980s through the end of the

sample, although the probability of a passive regime increased briefly during the 2008-09 financial

crisis.

6.3 Regime-shift robust test of FIRE

We use the estimated DSGE-RS model to simulate the regime-shift robust test of FIRE as described

in Section 4. Specifically, we take the estimated DSGE-RS model as the DGP and draw n =

1, ..., 1000 parameter vectors Θn from the estimated posterior distribution P (Θ|Z). Then for each

Θn, we simulate k = 1, ..., 200 samples of observations
{
yn,kt

}T+h

t=1
and

{
Ety

n,k
t+h

}T

t=1
conditional on

realized regimes {sit}
T+h
t=1 drawn from smoothed probabilities P̂ r(st | Θn,ZT ), and estimate γ̂n,kT

and δ̂n,kT for each of these samples. The resulting distributions of simulated γ̂n,kT and δ̂n,kT are used

to compute p-values for the null that the empirical estimates γ̂T and δ̂T were generated by the

DSGE-RS model under FIRE. As mentioned earlier, the simulation naturally provides us with the
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Figure 6: Probabilities of the aggressive monetary policy regime

Notes: The figure plots the evolution of the smoothed regime probability for the aggressive monetary regime from 1969:3 through
2020:1, evaluated for parameters set at their estimated posterior mode computed.

finite sample distribution of the regression coefficients. Hence, we do not need to bias-correct the

tests.

Table 3 reports the empirical estimates γ̂T and δ̂T for both the full sample (1970:2-2019:1) and

the post-1970s subsample (1983:1-2019:1) from Section 2 together with the corresponding means

and standard deviations of the distribution of γ̂n,kT and δ̂n,kT simulated from the DSGE-RS model

under FIRE, as well as the p-values of the null that the empirical estimates were generated from

this process. For both samples, the means of the simulated coefficient estimates E[γ̂FIRE
T ] and

E[δ̂FIRE
T ] are close to zero. This is because, similar to the univariate example in Section 4, the

effect of regime shifts is relatively small on average for both the full sample and the post-1970s

subsample. Nevertheless, for the forecast error regressions on current realizations shown in Panel

A, the distributions of simulated γ̂n,kT are sufficiently large so that the null of FIRE cannot be

rejected at reasonable confidence levels for either output growth or inflation. For the forecast error

regressions on forecast revisions in Panel B, by contrast, the empirical estimates are generally larger

and yield p-values of essentially zero for all but inflation for the post-1970s subsample. Hence,

based on these regression estimates, the regime-shift robust test strongly rejects the null of FIRE.
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Table 3: Regime-robust FIRE test for US inflation and output growth

Panel A: yt+4 − Ftyt+4 = θ + γyt + et+4

Full sample 1970:2-2019:1 Subsample 1983:1-2019:1

γ̂T E[γ̂FIRE
T ] σγ̂FIRE

T
p(FIRE) γ̂T E[γ̂FIRE

T ] σγ̂FIRE
T

p(FIRE)

Output growth −0.105 −0.007 0.107 0.359 −0.049 −0.015 0.123 0.778

Inflation 0.049 −0.031 0.093 0.404 −0.169 −0.054 0.110 0.290

Panel B: yt+4 − Ftyt+4 = ω + δ(Ftyt+4 − Ft−1yt+4) + et+4

Full sample 1970:2-2019:1 Subsample 1983:1-2019:1

δ̂T E[δ̂FIRE
T ] σδ̂FIRE

T
p(FIRE) δ̂T E[δ̂FIRE

T ] σδ̂FIRE
T

p(FIRE)

Output growth 0.717 −0.022 0.211 0.001 0.507 −0.022 0.130 0.000

Inflation 1.010 −0.017 0.244 0.000 0.111 −0.046 0.145 0.278

Notes: The table reports empirical coefficient estimates of forecast error regressions based on SPF data, the corresponding means and
standard deviations of the distribution of coefficient estimates based on simulated data from the DSGE-RS model under FIRE, and the
p-value of the null that the empirical coefficient estimates were generated by the DSGE-RS model under FIRE. See the text for details
on the simulation process and the construction of the test.

At the same time, as highlighted in Section 2 and illustrated by the results for inflation in

Panel B, the empirical coefficient estimates and with them the outcomes of the test of FIRE can

vary importantly over the sample under consideration. To investigate this further and to assess

the extent to which our estimated DSGE-RS model generates waves of over-and under-reaction,

we consider rolling window regressions.

6.4 Waves of over- and under-reaction

For each 40-quarter window from 1970:2 to 2019:1, we compute the 90 percent coverage bands

of simulated coefficient estimates from the DSGE-RS model under FIRE as well as the model-

implied mean simulated coefficient estimates conditional on observed data.30 We then compare

the empirical rolling window estimates from Figure 1 with these model-implied mean estimates

30To be more specific, the coverage bands are computed by simulating model-implied data Xn,k
t and forecasts

Et
[
Xn,k
t+h

]
for each posterior parameter vector Θn by drawing k = 1, ...200 samples of innovations ϵt and states st

from smoothed probabilities P̂ r(st | Θn,ZT ). The coefficient estimates conditional on observed data, by contrast,

are obtained by simulating Xn,k
t and Et

[
Xn,k
t+h

]
from smoothed estimates X̂t|st; Θn,ZT and drawing k = 1, ...200

samples of states st from smoothed probabilities P̂ r(st | Θn,ZT ). These conditional values should be interpreted as
resulting from a particular draw of innovations ϵt that represents the best model-implied estimate given the sample
period under consideration.
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and use the coverage bands to assess whether the null of FIRE can be rejected at a reasonable

significance level.

Figure 7 reports the results. As shown by the empirical estimates (blue lines) and as already

discussed in Section 2, there are large waves of over- and under-predication in the data. For the

majority of rolling windows, however, these waves are contained by the 90 percent coverage bands

implied by the DSGE-RS model. This is not an artifact of the 40-quarter window length. Even

for rolling windows of 60 quarters (15 years), the empirical estimates would be mostly within the

coverage bands. Hence, it is generally not possible to reject the null of FIRE at high significance

levels.31

The model-implied mean estimates (red lines), in turn, display substantial variation across the

rolling windows, indicating that the DSGE-RS model is capable of generating waves of over- and

under-reaction to current information. At the same time, while these waves comove with the waves

implied by the empirical estimates for some of the rolling windows, they are overall quite different

and on average of smaller magnitude. Hence, the DSGE-RS we use as the DGP to test FIRE fails

to account for the dynamics of output growth and inflation forecasts observed in the SPF data.

Also note that the model-implied coverage bands barely move and, likewise, E[γ̂FIRE
T ] and

E[δ̂FIRE
T ] (not shown) deviate little from zero across the rolling windows. This means that the

simulated regression coefficients implied by the model are, on average, not sensitive to variations

in the sequence of realized regimes (i.e., the f
(h)
11 and f

(h)
22 across the rolling window samples)

relative to agents’ expectations (i.e., the p
(h)
11 and p

(h)
22 implied by the model’s Markov transition

matrix P ).

31Figure 10 in Appendix C.4 reports the p-values of the FIRE test for each of the rolling window estimates.
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Figure 7: Regime-shift robust FIRE test across subsamples

Notes: The figure shows 40-quarter rolling regression estimates of γ̂t and δ̂t in (1) and (2) based on SPF data (solid blue line) and
based on data simulated from the DSGE-RS model (dash-dotted red line). The areas shaded in red show the 90 percent coverage bands
of the coefficient estimates implied by the DSGE-RS model. See the main text for details. The estimates are centered at the midpoint
of the rolling regression window (e.g., 1980 denotes the regression window 1975:1 to 1984:4).

6.5 Taking stock

The application with the medium-scale DSGE-RS model yields two main lessons. First, our regime-

shift robust test fails to decisively reject FIRE. Second, while the model generates sizable waves

of over- and under-reaction of expectations to current information, regime shifts in monetary

policy play only a small role for these waves, and the waves are generally quite different from

the empirical estimates. We do not see this as a negative result about the potential of regime

shifts to account for the large and time-varying waves in forecast error predictability. Indeed, it

is worth remembering that the simulations are conditional on the particular DSGE-RS model,

and that for other DGPs (including the univariate model used in Sections 3 and 4), the effect

of variations in regime realizations can be substantially larger. Instead, we consider the waves

in forecast error predictability as a challenge for this specific type of DSGE-RS model, which is

generally considered a benchmark for modern business cycle analysis and monetary policy. This
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provides a new empirical motivation to assess the extent to which alternative DGPs with other

types of regime shifts (e.g., in trend growth as in Foerster and Matthes, 2022 or trend inflation) as

well as various information frictions or departures from full rationality are capable of generating

the expectations dynamics observed in the data.

7 Conclusion

The present paper shows that regime shifts in FIRE models lead to predictable, regime-dependent

ex-post forecast errors. In general, in the presence of regime shifts, forecast errors become a com-

plicated function of the current state of the economy and the sequence of realized regimes over the

entire forecast horizon. This implies that reduced-form forecast error regressions by themselves are

not informative about alternative theories of expectations formation. Furthermore, regime shifts

imply that expectations exhibit waves of over- and under-reaction to current information in rolling

sample windows. Using survey-based forecast data of inflation and output growth constructed

from the SPF, we confirm the existence of such waves.

Based on these insights, we propose a regime-shift robust test of FIRE and apply it to an

estimated medium-scale DSGE model with regime shifts in the monetary policy interest rate rule.

Conditional on this DGP, we fail to decisively reject that the observed waves of over- and under-

reaction present in the SPF data were generated under FIRE. This should be taken as neither an

endorsement of FIRE nor a dismissal of alternative theories of expectations formation. Indeed,

we show that conditional on the observed macro data, the DSGE model with regime shifts in

monetary policy generates waves of over- and under-prediction that are generally quite different

from the ones we observe in the SPF data. We view this as a new empirical motivation to consider

models with a richer regime shift structure and/or alternative theories of expectations formation.
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Appendix

A Proofs

A.1 Proof of Proposition 1

The forecasting errors about yt+h, for any h > 0, are given by

FEt,t+h = yt+h − Etyt+h

= ast+h
ϕhxt − P (h)

st: aϕ
hxt + ast+h
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τ=1

ϕh−τεt+τ
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τ=1 ϕ
h−τεt+τ if st+h = 2

(A.1)

where the last equality follows from P
(h)
st,1 + P

(h)
st,2 = 1. We show this through proof by induction.

Clearly, P
(1)
st,1 + P

(1)
st,2 ≡ pst,1 + pst,2 = 1 for any st ∈ {1, 2}. Suppose that P

(h)
st,1 + P

(h)
st,2 = 1. We

should prove that P
(h+1)
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st,2 = 1. We have that
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Then, p11P
(h)
11 +p12P
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22 = p11+p12 = 1 and p21P
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st,2 = 1. Finally, we use xt =

yt
ast

to summarize

the above expression as
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which is 1 in the main text.
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A.2 Proof of Corollary 1

Consider

ast+h
− P (h)
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which is Corollary 1 in the main text.

A.3 Proof of Proposition 2

Forecast revisions can be expressed as

Etyt+h − Et−1yt+h = ϕhP
(h)
st: a

ast
yt − ϕh+1P

(h+1)
st−1: a

ast−1
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To obtain (14), we isolate yt from (A.5) and use it to substitute yt in (12).
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A.4 Proof of Proposition 3

The OLS coefficient estimate of regression yt+h − Ftyt+h = γyt + et+h is
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t=1 is

E
[
γ̂T | {st}T+h

t=1

]
= E

( T∑
t=1

a2stx
2
t

)−1( T∑
t=1

γ(h)st,st+h
a2stx

2
t

)
| {st}T+h

t=1


+ E

( T∑
t=1

a2stx
2
t

)−1( T∑
t=1

astxtξt+h

)
| {st}T+h

t=1

 .
The first term is the expected estimate implied by the data-generating process, while the second

term is the bias arising from the fact that in finite samples, innovations εt+1, εt+2, ..., εt+h affect

not only ξt+h but also
∑T

t=1 a
2
stx

2
t . In particular, for positive values of a1, a2 and ϕ, realizations of

ξt+h are positively correlated with
∑T

t=1 a
2
stx

2
t in finite samples and thus, the bias is negative.

To make progress on the first term, note that we can rewrite it as

E
[
γ̂cT | {st}

T+h
t=1

]
= E

( 1

T

T∑
t=1

a2stx
2
t

)−1(
1

T

T∑
t=1

γ(h)st,st+h
a2stx

2
t

)
| {st}T+h

t=1

 ,
where γ̂cT denotes the fact that this is effectively the bias-corrected estimate. Now, imagine re-

peating the OLS regression for K samples of size T +h, with each sample being conditional on the

same sample regime sequence {st}T+h
t=1 . Then, since the stochastic process {εt} and therefore {xt}

are covariance-stationary and ergodic for second moments, the sample moments will converge to
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the population moments as K goes to infinity; i.e.,

1

KT

K∑
k=1

T∑
t=1

a2stx
2
k,t|{st}Tt=1

p→E

[
1

KT

K∑
k=1

T∑
t=1

a2stx
2
k,t|{st}Tt=1

]
=

T∑
t=1

a2stE
[
x2k,t
]
,

and thus, equivalently32

(
1

KT

K∑
k=1

T∑
t=1

a2stx
2
k,t|{st}Tt=1

)−1

p→ E

[
1

KT

K∑
k=1

T∑
t=1

a2stx
2
k,t|{st}Tt=1

]−1

=

(
T∑
t=1

a2stE
[
x2t
])−1

,

and

1

KT

K∑
k=1

T∑
t=1

γ(h)st,st+h
a2stx

2
k,t|{st}Tt=1

p→ E

[
1

KT

K∑
k=1

T∑
t=1

γ(h)st,st+h
a2stx

2
k,t|{st}Tt=1

]
=

T∑
t=1

γ(h)st,st+h
a2stE

[
x2t
]
.

Hence, the OLS estimate converges to the linear projection coefficient (see e.g., Chapter 4.2 in

Hamilton, 1994), and we can express the expected bias-corrected estimate γ̂cT conditional on regime

sequence {st}T+h
t=1 as

E
[
γ̂cT | {st}

T+h
t=1

]
=

∑T
t=1 γ

(h)
st,st+ha

2
stE [x2t ]∑T

t=1 a
2
stE [x2t ]

=

∑2
j=1

∑2
i=1 a

2
i γ

(h)
ij F (h)

T (i, j)∑2
i=1 a

2
iF

(h)
T (i)

,

where the second equality makes use of the fact that under the assumption of two regimes, γ
(h)
st,st+ha

2
st

takes on one of four values (each with joint sample frequency F (h)
T (i, j)), while a2st takes on one of

two values (each with sample frequency F (h)
T (i)).

To analyze the properties of E
[
γ̂cT | {st}

T+h
t=1

]
, define the following conditional sample transition

probabilities:

f
(h)
ji =

∑T
t=1 1(st = i, st+h = j)∑T

t=1 1(st+h = j)
=

F (h)
T (i, j)

F (h)
T (j)

where
∑2

i=1 f
(h)
ji = 1. One can show that

32See, for example, Proposition 7.1 in Hamilton (1994).
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F (h)
T (j) =

1

T

T∑
t=1

1(st+h = j) ≈



1−f
(h)
22

2−f
(h)
11 −f

(h)
22

if j = 1

1−f
(h)
11

2−f
(h)
11 −f

(h)
22

if j = 2

Hence, F (h)
T (i, j) = f

(h)
ji F (h)

T (j), and F (h)
T (j) depends on f

(h)
11 and f

(h)
22 only. Substituting these expres-

sions together with γ
(h)
st,st+h ≡

(−1)st+h−1(a1−a2)
(
1−P

(h)
st,st+h

)
ϕh

ast
in the above expression E

[
γ̂cT | {st}

T+h
t=1

]
,

we obtain

E
[
γ̂cT | {st}

T+h
t=1

]
=

ϕh(a1 − a2)

a21(1− f
(h)
22 ) + a22(1− f

(h)
11 )︸ ︷︷ ︸

(+)

[a1(1− f
(h)
22 )(f

(h)
11 − p

(h)
11 )− a2(1− f

(h)
11 )(f

(h)
22 − p

(h)
22 )]︸ ︷︷ ︸

g(f
(h)
11 ,f

(h)
22 )

(A.6)

Clearly, the sign of E[γ|{st}T+h
t=1 ] depends on the sign of g(f

(h)
11 , f

(h)
22 ). The frontier in the (f

(h)
11 , f

(h)
22 )

plane for which is given by

f
(h)
11 = g(f

(h)
22 ) =

a1p
(h)
11 (1− f

(h)
22 )− a2(p

(h)
22 − f

(h)
22 )

a1(1− f
(h)
22 )− a2(p

(h)
22 − f

(h)
22 )

where a1(1−f (h)
22 ) > a2(p

(h)
22 −f

(h)
22 ) for any 0 ≤ f

(h)
22 ≤ 1, given that a1 > a2. Moreover, g(p

(h)
22 ) = p

(h)
11

and g(1) = 1. Then, E[γ|{st}T+h
t=1 ] ⋚ 0 ⇐⇒ f

(h)
11 ⋚ g(f

(h)
22 ).

A.5 Proof of Proposition 4

Full-information rational expectations about Xt+h are given by:

EtXt+h = Et (Ct+h + At+hXt+h−1 +Bt+hϵt+h)

= Et

(
Ct+h +

h−1∑
τ=1

(
τ∏

l=0

At+h−τ

)
Ct+h−τ +

h−1∏
τ=0

At+h−τXt

)

We will show through a proof by induction that
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EtXt+h =

([
C1 C2

]
(P ′)h +

[
A1 A2

]
(P ′ ⊗ Inx)

h−1∑
τ=1

(
Ã(P ′ ⊗ Inx)

)τ−1

C̃(P ′)h−τ

)
I:st

+
[
A1 A2

]
(P ′ ⊗ Inx)

(
Ã(P ′ ⊗ Inx)

)h−1

ῑstXt

where C̃ =

 C1 0nx×1

0nx×1 C2

, Ã =

 A1 0nx×nx

0nx×nx A2

, ῑst is a 2nx × nx size matrix whose stht block

of nx rows together with the columns form an identity matrix and the rest of the elements are 0,

and I:st is the s
th
t column of a 2× 2 identity matrix.

One can check that the expression above holds for h ∈ {1, 2}. Suppose it also holds for h = h̄;

does it also apply for h = h̄+ 1?

EtXt+h̄+1 = Et (Ct+h̄+1 + At+h̄+1Xt+h̄) = Et [Et+1 (Ct+h̄+1 + At+h̄+1Xt+h̄)]

= Et

([
C1 C2

]
(P ′)h̄ +

[
A1 A2

]
(P ′ ⊗ Inx)

h̄−1∑
τ=1

(
Ã(P ′ ⊗ Inx)

)τ−1

C̃(P ′)h̄−τ

)
I:st+1

+ Et

([
A1 A2

]
(P ′ ⊗ Inx)

(
Ã(P ′ ⊗ Inx)

)h̄−1

ῑst+1Xt+1

)
=

([
C1 C2

]
(P ′)h̄ +

[
A1 A2

]
(P ′ ⊗ Inx)

h̄−1∑
τ=1

(
Ã(P ′ ⊗ Inx)

)τ−1

C̃(P ′)h̄−τ

)
EtI:st+1

+
[
A1 A2

]
(P ′ ⊗ Inx)

(
Ã(P ′ ⊗ Inx)

)h̄−1

Et

(
ῑst+1At+1Xt + ῑst+1Ct+1

)
=

[
C1 C2

]
(P ′)h̄+1I:st +

[
A1 A2

]
(P ′ ⊗ Inx)

h̄∑
τ=1

(
Ã(P ′ ⊗ Inx)

)τ−1

C̃(P ′)h̄+1−τI:st

+
[
A1 A2

]
(P ′ ⊗ Inx)

(
Ã(P ′ ⊗ Inx)

)h̄
ῑst︸ ︷︷ ︸

response to info at time t

Xt

where the equality in the 7th row follows from EtI:st+1 = P ′I:st . Therefore,

Mt,t+h =
[
C1 C2

]
(P ′)hI:st +

[
A1 A2

]
(P ′ ⊗ Inx)

h−1∑
τ=1

(
Ã(P ′ ⊗ Inx)

)τ−1

C̃(P ′)h−τI:st (A.7)

Qt,t+h =
[
A1 A2

]
(P ′ ⊗ Inx)

(
Ã(P ′ ⊗ Inx)

)h−1

ῑst (A.8)
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Finally, we note that Mt,t+1 =
[
C1 C2

]
P ′I:st .

A.6 Proof of Proposition 5

Consider the ex-post forecasting error about vector Yt+h, where h ≥ 1:

FEt,t+h = Yt+h − EtYt+h

= Ψ1

(
Cst+h

+ Ast+h
Xt+h−1 +Bt+hϵt+h −Mt,t+h −Qt,t+hXt

)
= Ψ1Cst+h

+Ψ1Ast+h

(
Cst+h−1

+ As+h−1Xt+h−1 +Bst+h−1
ϵt+h−1 −Mt,t+h −Qt,t+hXt

)
+Ψ1Bst+h

ϵt+h

= ...

= Ψ1

(
Cst+h

+
h−1∑
τ=1

(
τ∏

l=0

Ast+h−l

)
Cst+h−τ

−Mt,t+h

)
︸ ︷︷ ︸

Θt,t+h≡bias

+Ψ1

(
h∏

τ=1

Ast+τ −Qt,t+h

)
︸ ︷︷ ︸
Γt,t+h≡ex-post predictability

Xt + errort+h

(A.9)

where errort+h = Ψ1

∑h−1
τ=1(

∏τ
l=0Ast+h−l

)Bst+h−τ
ϵt+h−τ + Ψ1Bst+h

ϵt+h. We now turn to expressing

ex-post forecast errors as a function of ex-ante forecast revisions. The FIRE forecasts about the

endogenous variables vector Xt+h in periods t and (t− 1) are given by, respectively,

EtXt+h =Mt,t+h +Qt,t+hXt (A.10)

Et−1Xt+h =Mt−1,t+h +Qt−1,t+hXt−1 (A.11)

Hence, the ex-ante forecast revision about Xt+h is given by

FRt,t+h = EtXt+h − Et−1Xt+h =Mt,t+h −Mt−1,t+h +Qt,t+hXt −Qt−1,t+hXt−1 (A.12)

If Qt,t+h is invertible, then from (A.12), Xt = Q−1
t,t+h(EtXt+h − Et−1Xt+h) + Q−1

t,t+hQt−1,t+hXt−1 −
Q−1

t,t+h(Mt,t+h −Mt−1,t+h). Substituting for Xt into (A.9), we can rewrite ex-post forecast errors as

a function of ex-ante forecast revisions.
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Yt+h − EtYt+h =
(
Θt,t+h − Γt,t+hQ

−1
t,t+h(Mt,t+h −Mt−1,t+h)

)︸ ︷︷ ︸
=Ωt,t+h

+Γt,t+hQ
−1
t,t+h︸ ︷︷ ︸

=∆t,t+h

(EtXt+h − Et−1Xt+h)

(A.13)

+ Γt,t+hQ
−1
t,t+hQt−1,t+h︸ ︷︷ ︸

=Λt−1,t+h

Xt−1 + errort+h

If Qt,t+h is non-invertible, we proceed as follows. Let qij and q̃ij denote the element located

in row i and column j in matrices Qt,t+h and Q̃t−1,t+h, respectively. Furthermore, let mi be the

element located in row i in matrix (Mt,t+h −Mt−1,t+h) . The ex-ante forecast revision of any variable

Xi in X can be written as:

FRi,t,t+h= EtXi,t+h − Et−1Xi,t+h = mi +
nx∑
j=1

qijXj,t −
nx∑
j=1

q̃ijXj,t−1 (A.14)

Then, any variable Xkt in Xt can be written as a function of the ex-ante forecast revision about

variable Xi,t+h, where i is chosen such that qik ̸= 0, as well as X−kt, Xt−1, and a constant:

Xkt =
FRi,t,t+h −

∑
j ̸=k qijXjt +

∑
j q̃ijXj,t−1 −mi

qik
(A.15)

=
[
0 0 ... 1

qik
... 0 0

]
︸ ︷︷ ︸

Q−(k,:)

FRt,t+h −
[
qi1
qik

...
qi,k−1

qik
0

qi,k+1

qik
... qinx

qik

]
︸ ︷︷ ︸

QQ(k,:)

Xt +
[
q̃i1
qik

... q̃inx

qik

]
︸ ︷︷ ︸

Q̃Q(k,:)

Xt−1

− mi

qik︸︷︷︸
MQ(k,:)

It follows that vector Xt can be written as a function of ex-ante forecast revisions as described

below:

Xt = Q−FRt,t+h −QQXt + Q̃QXt−1 −MQ

From here, we have that Xt = (Inx +QQ)
−1(Q−FRt,t+h + Q̃QXt−1 −MQ), and that
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Yt+h − EtYt+h = Θt,t+h − Γt,t+h(Inx +QQ)
−1MQ︸ ︷︷ ︸

=Ωt,t+h

+Γt,t+h(Inx +QQ)
−1Q−︸ ︷︷ ︸

=∆t,t+h

FRt,t+h (A.16)

+ Γt,t+h(Inx +QQ)
−1Q̃Q︸ ︷︷ ︸

=Λt−1,t+h

Xt−1 + errort+h

A.7 Proof of Corollary 2

1. Consider the case when C1 ̸= C2, while A1 = A2 = A and B1 = B2 = B. Note that, for

A1 = A2 = A, the following is true:

Qt,t+h = Ψ1

[
A A

]
(P ′ ⊗ Inx)

(
Ã(P ′ ⊗ Inx)

)h−1

ῑst = Ψ1A
h (A.17)

Therefore, Γt,t+h = Ψ1(A
h − Ah) = 0ny×nx , and, given that B1 = B2 = B, we have that

errort+h = Ψ1

∑h−1
τ=0 A

τBϵt+h−τ . Furthermore,

Mt,t+h = Ψ1

h−1∑
τ=0

Aτ C̃(P ′)h−τI:st ̸= 0ny×1 (A.18)

In this case, Θt,t+h = Ψ1

∑h−1
τ=0 A

τ (Cst+h−τ
− C̃(P ′)h−τI:st) ̸= 0ny×1,therefore, ex-post forecast

errors will be biased, but they will not respond to information embedded in Xt.

2. Now, suppose that C1 = C2 = C and A1 = A2 = A, while B1 ̸= B2. Note that, given that

C1 = C2 = C, the following is true:

Mt,t+h = Ψ1

h−1∑
τ=0

AτC (A.19)

So, Θt,t+h = 0ny×nx , implying that ex-post forecast error are not biased. Furthermore,

A1 = A2 = A implies that Γt,t+h = 0ny×nx . For B1 ̸= B2, the error term is as defined in

Section A.6. Consequently, when the regime shifts affect only the relationship between the

endogenous variables and innovations, ex-post forecast errors are just accumulated noise,

similar to the case of no regime shifts discussed below.

3. Finally, shutting down all regime shifts in the model implies that Θt,t+h = 0ny×1, Γt,t+h =

0ny×nx , and errort+h = Ω
∑h−1

τ=0 A
τBϵt+h−τ . Hence, in this case, forecast errors are accumu-

lated noise similar to the second case.
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B Univariate regime-shift model

The univariate regime shift model that we use to illustrate the regime-shift robust test of FIRE in

Section 4 is

yt = astxt, (B.1)

where

ast =

a1 if st = 1

a2 if st = 2

(B.2)

and the regime switching is governed by an exogenous Markov process with transition matrix

P =

p11 p12

p21 p22

 . (B.3)

Table 4 reports the characteristics of the prior and posterior distributions, estimated with US

output growth from 1969:3 to 2020:1.

Table 4: Prior and posterior distribution for the model with regime shifts

Prior Posterior
pdf 5% 95% mean 5% 95%

a1 U 0.1 5 4.17 2.58 5.27
a2 U 0.1 5 1.44 0.86 1.98
ϕ B 0.2 0.8 0.87 0.82 0.92
σ IG 0.01 2 0.38 0.26 0.58
p12 B 0.01 0.05 0.03 0.01 0.04
p21 B 0.01 0.05 0.02 0.01 0.04

52



C DSGE-RS model

C.1 Description of the log-linearized model

We briefly describe the log-linearized DSGE-RS model, which largely parallels Smets and Wouters

(2007). For details on the micro-foundations, we refer the reader to their paper.

The aggregate resource constraint is given by

yt = cyct + iyit + zyzt + egt (C.1)

where yt is output, ct consumption, zt is the capital utilization rate, and egt is exogenous government

spending such that egt = ρge
g
t−1+ε

g
t +ρgaε

a
t , with ε

j
t ∼ N (0, σ2

j ) for any j ∈ {g, a}, where εat denotes
a productivity shock. The parameter cy = 1 − gy − iy, with gy being the share of exogenous

government spending in output, whereas iy = (γ − 1 + δ)ky where γ is the steady-state growth

rate, δ is the capital depreciation rate, and ky is the steady-state capital to output ratio. Moreover,

zy = r∗kky, where r
∗
k is the steady-state rental rate of capital. The consumption Euler equation is

described by

ct = c1ct−1 + (1− c1)Etct+1 + c2(Lt − EtLt+1)− c3(Rt − Etπt+1) + ebt (C.2)

where Lt is supplied labor hours, Rt is the nominal short-term interest rate, πt is inflation, and

ebt is a disturbance term that follows an AR(1) process ebt = ρbe
b
t−1 + εbt with εbt ∼ N (0, σ2

b ).

Parameter c1 = (λ/γ)(1 + λ/γ), where λ denotes external consumption habit and σc the elasticity

of intertemporal substitution. Moreover, c2 = (σc − 1)(w∗L∗/C∗)/(σc(1 + λ/γ)) with w∗L∗/C∗

being the steady-state labor income share, and c3 = (1 − λ/γ)/(σc(1 + λ/γ)). The equilibrium

equation for investment, it, is

it = i1it−1 + (1− i1)Etit+1 + i2qt + eit (C.3)

where qt denotes the capital price, and eit is a disturbance to the investment-specific technology

process that follows an AR(1) process eit = ρie
i
t−1 + εit with εit ∼ N (0, σ2

i ). Parameter i1 =

(1+βγ1−σc)−1, where β is the discount factor of households, and i2 = ((γ2φ)(1 + βγ1−σc))
−1
, with

φ being the steady-state elasticity of the capital adjustment cost function. The equation for capital

price is

qt = q1Etit+1 + (1− q1)Etr
k
t+1 − (Rt − Etπt+1) + q2e

b
t (C.4)
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where rkt is the rental rate of capital, given by

rkt = Lt − kt + wt (C.5)

and q1 = βγ−σc(1− δ), q2 = σc(λ+ γ)/(γ − λ). The aggregate production function is

yt = ϕp(αk
s
t + (1− α)Lt + eat ) (C.6)

where eat is the TFP shock that follows an AR(1) process eat = ρae
a
t−1 + εat with εat ∼ N (0, σ2

a), α

is the share of capital in production,ϕp is the share of fixed costs in production plus unity, and kst

denotes current capital used in production

kst = kt−1 + zt (C.7)

with

zt = z1r
k
t (C.8)

where z1 = (1− ψ)/ψ with ψ being a (positive) function of the elasticity of the capital utilization

adjustment cost function. The equation for capital accumulation is described by

kt = k1kt−1 + (1− k1)it + k2e
i
t (C.9)

where k1 = (1− δ)/γ; k2 = γ2φ(1− k1)(1 + βγ1−σc). Inflation dynamics are characterized by the

following New Keynesian Phillips curve

πt = π1πt−1 + π2Etπt+1 − π3µ
p
t + ept (C.10)

with the price mark-up given by

µp
t = α(kst − Lt) + eat − wt (C.11)

and ept is a price mark-up shock, assumed to follow an ARMA(1,1) process, ept = ρpe
p
t−1+ε

p
t−µpε

p
t−1.

Furthermore, π1 = ιp/(1 + βιpγ
1−σc), with ιp being the degree of indexation to past inflation, and

π2 = βπ1γ
1−σc/ιp; π3 = π1(1−ζp)(1−βζpγ1−σc)/(ιpζp(1+ξp(ϕp−1))). Real wages adjust according

to

wt = w1wt−1 + (1− w1)(Etwt+1 + Etπt+1)− w2πt + w3πt−1 − w4µ
w
t + ewt (C.12)
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with the wage mark-up given by

µw
t = wt − σLLt −

γct − λct−1

γ − λ
(C.13)

where σL is the elasticity of labor supply with respect to the real wage, and ewt is a disturbance

to the wage mark-up, assumed to follow an ARMA(1,1) process, ewt = ρwe
w
t−1 + εwt − µwε

w
t−1.

Moreover, w1 = 1/(1+βγ1−σc); w2 = w1(1+βιwγ
1−σc) with ιw being wage indexation; w3 = w1ιw;

and w4 = w1(1− ζw)(1− βζwγ
1−σc)/(ζw(1 + ξw(ϕw − 1))), with ζw capturing real wage rigidity, ξw

the curvature of the Kimball labor market aggregator, and (ϕw − 1) the steady-state labor market

mark-up.

The only main difference from Smets and Wouters (2007) is that, as in Bianchi (2013), the

monetary policy interest rate rule switches between two regimes

Rt = ρstRt−1 + (1− ρst)(ϕ
π
stπt + ϕy

st(yt − yt−1)) + vt (C.14)

where vt = ρvvt−1 + εvt with εvt ∼ N (0, σ2
v) being a monetary policy shock; and where the response

coefficients can take two sets of values, with the transition governed by a Markov process.

C.2 Solution and estimation

The regime-dependent MSV solution of the model under FIRE is given by

Xt = AstXt−1 +Bstϵt (C.15)

For the estimation, we map a vector of observable variables, Yt, with the endogenous variables

vector Xt,

Yt = Ψ0 +Ψ1Xt (C.16)

where Yt contains data on output growth, consumption growth, investment growth, real wage

growth, labor hours, inflation, and the federal funds rate.33 Vector Ψ0 is given by

Ψ0 =
[
∆̄y ∆̄c ∆̄i ∆̄w l̄ π̄ r̄

]′
(C.17)

33We do not adjust the growth rates of output, consumption, and investment by population growth. Otherwise,
we would have to make assumptions about the evolution of the population growth within the model, since the SPF
provides forecasts about output growth, not output growth per capita.
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where ∆̄y, ∆̄c, ∆̄i, ∆̄w are the average trend growth rates of output, consumption, investment,

and real wage, respectively; l̄ denotes steady-state hours worked; π̄ is the steady-state inflation

rate; and r̄ is the steady-state federal funds rate.

Tables 5 and ?? report the prior distribution characteristics as well as the estimated posterior

mean, posterior mode, and the 5th and 95th percentiles of the posterior distribution for all 40

estimated parameters. As in Smets and Wouters (2007), we fix δ = 0.025, gy = 0.18, λw = 1.5,

ξw = 10, and ξp = 10. Moreover, r̄ = 100(β−1γσcπ∗−1), where π∗ = 1+π̄/100 and γ = 1+∆̄y/100.

The one important difference relative to Bianchi (2013) is that we assume that the response

of monetary policy to deviations of inflation from its target in the second regime is normally

distributed with mean 0.5 and standard deviation 0.2. Differently, Bianchi (2013) assumes that that

parameter has a gamma distribution with mean 1 and standard deviation 0.4. In our robustness

exercises, we have found that the choice of prior does not affect the simulation results of the

regime-shift robust FIRE test (details can be provided by the authors upon request).

In regime 1, the response of nominal interest rates to deviations of inflation from its target is

normally distributed with mean 1.8 and standard deviation 0.5, whereas in regime 2, it is normally

distributed with mean 0.5 and standard deviation 0.2. In both regimes, the response of nominal

interest rates to output growth has a gamma distribution with mean 0.25 and standard deviation

0.15, whereas the persistence of nominal interest rates has a beta distribution with mean 0.6 and

standard deviation 0.2. Both transition probabilities, p12 and p21, are assumed to have a beta

distribution with mean close to 0.1 and standard deviation 0.05.

The share of capital in production is normally distributed with mean 0.3 and standard deviation

0.05, whereas the share of fixed costs in production (plus unity) has a normal distribution centered

at 1.25 with standard deviation 0.12. The elasticity of intertemporal substitution is normally

distributed with mean 1.5 and standard deviation 0.37. The external consumption habit parameter

has a beta distribution with mean 0.7 and standard deviation 0.1. The elasticity of labor supply

with respect to the real wage is normally distributed with mean 2 and standard deviation 0.75.

Wage and price indexation parameters both have a beta distribution with mean 0.5 and standard

deviation 0.15, whereas real wage and price rigidity parameters have a beta distribution with mean

0.5 and standard deviation 0.1. The parameter linked to the elasticity of the capital utilization

adjustment cost function, ψ, has a beta distribution with mean 0.5 and standard deviation 0.15.

The function of the households’ discount factor, 100(β−1 − 1), is assumed to follow a gamma

distribution with mean 0.25 and standard deviation 0.1. The average trend growth rate for output

follows a normal distribution with mean 0.4 and standard deviation 0.1; steady-state inflation is

assumed to follow a gamma distribution with mean 0.62 and standard deviation 0.1; hours worked
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Table 5: Prior and posterior distribution of structural parameters

Prior Posterior
pdf mean std mean mode 5% 95%

Monetary policy parameters
ϕπ
1 N 1.80 0.50 2.63 2.44 2.28 3.00
ϕπ
2 N 0.50 0.20 0.77 0.81 0.58 0.83
ϕy
1 G 0.25 0.15 0.40 0.42 0.20 0.58
ϕy
2 G 0.25 0.15 0.62 0.44 0.42 0.88
ρ1 B 0.60 0.20 0.64 0.61 0.57 0.75
ρ2 B 0.60 0.20 0.07 0.06 0.02 0.14
p12 B 0.0909 0.083 0.15 0.11 0.08 0.25
p21 B 0.0909 0.083 0.29 0.40 0.11 0.42

Other structural parameters
α N 0.30 0.05 0.14 0.14 0.12 0.16
σc N 1.50 0.37 1.50 1.54 1.24 1.78
ϕp N 1.25 0.12 2.00 2.00 1.97 2.01
φ N 4 1.50 7.20 7.12 5.69 8.34
λ B 0.70 0.10 0.72 0.70 0.64 0.79
ζw B 0.50 0.10 0.71 0.70 0.63 0.78
σL N 2 0.75 1.99 2.02 1.66 2.38
ζp B 0.50 0.10 0.59 0.59 0.53 0.65
ιw B 0.50 0.15 0.70 0.56 0.54 0.84
ιp B 0.50 0.15 0.26 0.26 0.15 0.37
ψ B 0.50 0.15 0.43 0.44 0.32 0.56
µp B 0.50 0.20 0.65 0.64 0.53 0.75
µw B 0.50 0.20 0.80 0.79 0.69 0.88

100(β−1 − 1) G 0.25 0.10 0.14 0.15 0.08 0.21
∆̄y N 0.40 0.10 0.21 0.22 0.19 0.23
π̄ G 0.62 0.10 0.58 0.63 0.49 0.67
l̄ N 0 2 -3.31 -2.12 -4.67 -2.03

Notes: The table reports the prior distribution characteristics for all the estimated parameters, excluding shocks’ parameters. It then
reports the estimated posterior mean and model, as well as the 5th and 95th percentiles of the posterior distributions, based on 500,000
draws generated through the Metropolis-Hastings algorithm.

in steady state are assumed to follow a normal distribution centered at 0 with standard deviation

2. Finally, the persistence of all the shocks has a beta prior with mean 0.5 and standard deviation

0.2. Furthermore, the prior of the standard deviation of each shock innovation is an inverse gamma

distribution with mean 0.1 and standard deviation 2. The response of the price and wage mark-

up disturbances to the past respective innovations in the ARMA(1,1) process both follow a beta

distribution with mean 0.5 and standard deviation 0.2. The response of exogenous government

spending to productivity innovations has a beta distribution with mean 0.5 and standard deviation
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0.2.

Table 6: Prior and posterior distribution of shock processes

Prior Posterior
pdf mean std mean mode 5% 95%

ρa B 0.5 0.2 0.36 0.36 0.34 0.38
ρb B 0.5 0.2 0.19 0.17 0.15 0.23
ρg B 0.5 0.2 0.45 0.45 0.42 0.48
ρi B 0.5 0.2 0.27 0.27 0.24 0.31
ρv B 0.5 0.2 0.16 0.16 0.15 0.18
ρp B 0.5 0.2 0.12 0.13 0.11 0.14
ρw B 0.5 0.2 0.38 0.38 0.35 0.41
ρga B 0.50 0.20 0.66 0.67 0.55 0.77
µp B 0.50 0.20 0.65 0.64 0.53 0.75
µw B 0.50 0.20 0.80 0.79 0.69 0.88
σa IG 0.1 2 0.99 0.99 0.99 1.00
σb IG 0.1 2 0.39 0.46 0.27 0.52
σg IG 0.1 2 0.93 0.94 0.88 0.96
σi IG 0.1 2 0.81 0.82 0.73 0.88
σv IG 0.1 2 0.49 0.41 0.38 0.59
σp IG 0.1 2 0.87 0.86 0.83 0.91
σw IG 0.1 2 0.86 0.85 0.75 0.92

Notes: The table reports the prior distribution characteristics for all the estimated parameters describing shock processes. It then
reports the estimated posterior mean and model, as well as the 5th and 95th percentiles of the posterior distributions, based on 500,000
draws generated through the Metropolis-Hastings algorithm.

To provide more details on posterior distribution, Figure 8 plots the kernel densities.

C.3 Filtering and smoothing algorithms

In what follows, we describe the Kim and Nelson (1999) filtering and smoothing algorithms, given

the state-space representation of the model in (C.15)-(C.16) in the main text. We initiate the

filtering process at regime s0 = 1, thus Pr(s0) =
1−p22

2−p11−p22
. Moreover, Xs0

0|0 = 0nx×1 and vec(K
s0
0|0) =(

In2
x
− (As0 ⊗ As0)

)−1
(Bs0 ⊗ Bs0)vec(Σ). Then, for any t ≥ 1, we abide by the following filtering

algorithm:

1. Kalman filter

X
(st−1,st)
t|t−1 = AstX

st
t−1|t−1 (C.18)

K
(st−1,st)
t|t−1 = AstK

st
t−1|t−1A

′
st +BstΣB

′
st (C.19)

g
(st−1,st)
t|t−1 = Yt −Ψ1X

(st−1,st)
t|t−1 −Ψ0 (C.20)
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Figure 8: Posterior distribution of all the estimated parameters

Notes: The figure exhibits the kernel density of the posterior distribution of all the estimated parameters, based on 500,000 draws
generated through the Metropolis-Hastings algorithm.

X
(st−1,st)
t|t = X

(st−1,st)
t|t +K

(st−1,st)
t|t−1 Ψ′

1

(
Ψ1K

(st−1,st)
t|t−1 Ψ′

1

)−1

g
(st−1,st)
t|t−1 (C.21)

K
(st−1,st)
t|t =

(
I −K

(st−1,st)
t|t−1 Ψ′

1

(
Ψ1K

(st−1,st)
t|t−1 Ψ′

1

)−1

Ψ1

)
K

(st−1,st)
t|t−1 (C.22)

2. Hamilton filter

Let It denote the information set up until period t.

Pr(st, st−1|It−1) = Pr(st|st−1)Pr(st−1|It−1) (C.23)

f(Yt|It−1) =
∑
st

∑
st−1

f(Yt|st, st−1, It−1)Pr(st, st−1|It−1) (C.24)
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where

f(Yt|st, st−1, It−1) = (2π)−
ny
2 | Ψ1K

(st−1,st)
t|t−1 Ψ′

1 |−
1
2 exp

(
−1

2
g
(st−1,st)′

t|t−1

(
Ψ1K

(st−1,st)
t|t−1 Ψ′

1

)−1

g
(st−1,st)
t|t−1

)
(C.25)

Pr(st, st−1|It) =
f(Yt|st, st−1, It−1)Pr(st, st−1|It−1)

f(Yt|It−1)
(C.26)

Pr(st|It) =
∑
st−1

Pr(st, st−1|It) (C.27)

3. Approximations

Xst
t|t =

∑
st−1

Pr(st, st−1|It)X
(st−1,st)
t|t

Pr(st|It)
(C.28)

Kst
t|t =

∑
st−1

Pr(st, st−1|It)
(
K

(st−1,st)
t|t + (Xst

t|t −X
(st−1,st)
t|t )(Xst

t|t −X
(st−1,st)
t|t )′

)
Pr(st|It)

(C.29)

We now turn to the smoothing algorithm. We are particularly interested in the evolution of the

smoothed regime probabilities that will help us make inferences about the regime path, and the

evolution of smoothed Xst
t|T for each regime st, where T denotes the final period of the sample.

Starting from t+ 1 = T , we have

Pr(st, st+1|IT ) =
Pr(st+1|IT )Pr(st|It)Pr(st+1|st)

Pr(st+1|It)
(C.30)

where Pr(st+1|It) = Pr(st+1|st)Pr(st|It). Finally, the smoothed regime probabilities are given by

Pr(st|IT ) =
∑
st+1

Pr(st, st+1|IT ) (C.31)

Regarding the smoothing algorithm for Xt, we first compute

X
(st,st+1)
t|T = Xst

t|t + K̃
(st,st+1)
t (X

st+1

t+1|T −X
(st,st+1)
t+1|t ) (C.32)

where K̃
(st,st+1)
t = Kst

t|tA
′
st+1

(
K

(st,st+1)
t+1|t

)−1

. Further,

K
(st,st+1)
t|T = Kst

t|t + K̃
(st,st+1)
t (K

st+1

t+1|T −K
(st,st+1)
t+1|t )

(
K̃

(st,st+1)
t

)′
(C.33)

Xst
t|T =

∑
st+1

Pr(st, st=1|IT )X
(st,st+1)
t|T

Pr(st|IT )
(C.34)
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Figure 9: Posterior distribution

Notes: The figure plots the kernel densities of the full posterior distribution (500, 000 draws) in dashed red jointly with the respective
densities of the 1, 000 draws used for the two testing approaches in solid blue.

Kst
t|T =

∑
st+1

Pr(st, st+1|IT )
(
K

(st,st+1)
t|T + (Xst

t|T −X
(st,st+1)
t|T )(Xst

t|T −X
(st,st+1)
t|T )′

)
Pr(st|IT )

(C.35)

C.4 Regime-shift robust FIRE test: Additional results

Figure 9 plots the kernel density of the full posterior distribution of 500, 000 draws jointly with the

kernel density of the N = 1, 000 draws used for the two testing approaches. As the figure shows,

the 1, 000 draws represent well the full posterior distribution of the estimated parameters.

Figure 10 plots the evolution of p-values associated with the FIRE test across the 40-quarter

subsamples.
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Figure 10: Regime-robust FIRE test for waves of over- and under-reaction: p-values

Notes: The figure shows p-values of the null that the empirical estimates of γ̂t and δ̂t in (1) and (2) were generated by the DSGE-RS
model under FIRE for each 40-quarter rolling window. The values are centered at the midpoint of the rolling regression window (e.g.,
1980 denotes the regression window 1975:1 to 1984:4). The dashed red line indicates the 10% significance level for rejection of the null.
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